The duodecimal system (also known as base 12 or dozenal) is a positional notation numeral system using twelve as its base.
Unicode points U+218C and U+218D seem to be reserved for the Dwiggins digits (stylized X and E).
Powers[]
n± | n± | ||||
---|---|---|---|---|---|
n± | |||||
0 | 3 | 9 | |||
zero | three | nine | |||
n± | |||||
2 | 4 | 1 | |||
two | four | one |
Multiplication table[]
× | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ᘔ | Ɛ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1ᘔ | 1Ɛ | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ᘔ | Ɛ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1ᘔ | 1Ɛ | 20 |
2 | 0 | 2 | 4 | 6 | 8 | ᘔ | 10 | 12 | 14 | 16 | 18 | 1ᘔ | 20 | 22 | 24 | 26 | 28 | 2ᘔ | 30 | 32 | 34 | 36 | 38 | 3ᘔ | 40 |
3 | 0 | 3 | 6 | 9 | 10 | 13 | 16 | 19 | 20 | 23 | 26 | 29 | 30 | 33 | 36 | 39 | 40 | 43 | 46 | 49 | 50 | 53 | 56 | 59 | 60 |
4 | 0 | 4 | 8 | 10 | 14 | 18 | 20 | 24 | 28 | 30 | 34 | 38 | 40 | 44 | 48 | 50 | 54 | 58 | 60 | 64 | 68 | 70 | 74 | 78 | 80 |
5 | 0 | 5 | ᘔ | 13 | 18 | 21 | 26 | 2Ɛ | 34 | 39 | 42 | 47 | 50 | 55 | 5ᘔ | 63 | 68 | 71 | 76 | 7Ɛ | 84 | 89 | 92 | 97 | ᘔ0 |
6 | 0 | 6 | 10 | 16 | 20 | 26 | 30 | 36 | 40 | 46 | 50 | 56 | 60 | 66 | 70 | 76 | 80 | 86 | 90 | 96 | ᘔ0 | ᘔ6 | Ɛ0 | Ɛ6 | 100 |
7 | 0 | 7 | 12 | 19 | 24 | 2Ɛ | 36 | 41 | 48 | 53 | 5ᘔ | 65 | 70 | 77 | 82 | 89 | 94 | 9Ɛ | ᘔ6 | Ɛ1 | Ɛ8 | 103 | 10ᘔ | 115 | 120 |
8 | 0 | 8 | 14 | 20 | 28 | 34 | 40 | 48 | 54 | 60 | 68 | 74 | 80 | 88 | 94 | ᘔ0 | ᘔ8 | Ɛ4 | 100 | 108 | 114 | 120 | 128 | 134 | 140 |
9 | 0 | 9 | 16 | 23 | 30 | 39 | 46 | 53 | 60 | 69 | 76 | 83 | 90 | 99 | ᘔ6 | Ɛ3 | 100 | 109 | 116 | 123 | 130 | 139 | 146 | 153 | 160 |
ᘔ | 0 | ᘔ | 18 | 26 | 34 | 42 | 50 | 5ᘔ | 68 | 76 | 84 | 92 | ᘔ0 | ᘔᘔ | Ɛ8 | 106 | 114 | 122 | 130 | 13ᘔ | 148 | 156 | 164 | 172 | 180 |
Ɛ | 0 | Ɛ | 1ᘔ | 29 | 38 | 47 | 56 | 65 | 74 | 83 | 92 | ᘔ1 | Ɛ0 | ƐƐ | 10ᘔ | 119 | 128 | 137 | 146 | 155 | 164 | 173 | 182 | 191 | 1ᘔ0 |
10 | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | ᘔ0 | Ɛ0 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 1ᘔ0 | 1Ɛ0 | 200 |
11 | 0 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | ᘔᘔ | ƐƐ | 110 | 121 | 132 | 143 | 154 | 165 | 176 | 187 | 198 | 1ᘔ9 | 1Ɛᘔ | 20Ɛ | 220 |
12 | 0 | 12 | 24 | 36 | 48 | 5ᘔ | 70 | 82 | 94 | ᘔ6 | Ɛ8 | 10ᘔ | 120 | 132 | 144 | 156 | 168 | 17ᘔ | 190 | 1ᘔ2 | 1Ɛ4 | 206 | 218 | 22ᘔ | 240 |
13 | 0 | 13 | 26 | 39 | 50 | 63 | 76 | 89 | ᘔ0 | Ɛ3 | 106 | 119 | 130 | 143 | 156 | 169 | 180 | 193 | 1ᘔ6 | 1Ɛ9 | 210 | 223 | 236 | 249 | 260 |
14 | 0 | 14 | 28 | 40 | 54 | 68 | 80 | 94 | ᘔ8 | 100 | 114 | 128 | 140 | 154 | 168 | 180 | 194 | 1ᘔ8 | 200 | 214 | 228 | 240 | 254 | 268 | 280 |
15 | 0 | 15 | 2ᘔ | 43 | 58 | 71 | 86 | 9Ɛ | Ɛ4 | 109 | 122 | 137 | 150 | 165 | 17ᘔ | 193 | 1ᘔ8 | 201 | 216 | 22Ɛ | 244 | 259 | 272 | 287 | 2ᘔ0 |
16 | 0 | 16 | 30 | 46 | 60 | 76 | 90 | ᘔ6 | 100 | 116 | 130 | 146 | 160 | 176 | 190 | 1ᘔ6 | 200 | 216 | 230 | 246 | 260 | 276 | 290 | 2ᘔ6 | 300 |
17 | 0 | 17 | 32 | 49 | 64 | 7Ɛ | 96 | Ɛ1 | 108 | 123 | 13ᘔ | 155 | 170 | 187 | 1ᘔ2 | 1Ɛ9 | 214 | 22Ɛ | 246 | 261 | 278 | 293 | 2ᘔᘔ | 305 | 320 |
18 | 0 | 18 | 34 | 50 | 68 | 84 | ᘔ0 | Ɛ8 | 114 | 130 | 148 | 164 | 180 | 198 | 1Ɛ4 | 210 | 228 | 244 | 260 | 278 | 294 | 2Ɛ0 | 308 | 324 | 340 |
19 | 0 | 19 | 36 | 53 | 70 | 89 | ᘔ6 | 103 | 120 | 139 | 156 | 173 | 190 | 1ᘔ9 | 206 | 223 | 240 | 259 | 276 | 293 | 2Ɛ0 | 309 | 326 | 343 | 360 |
1ᘔ | 0 | 1ᘔ | 38 | 56 | 74 | 92 | Ɛ0 | 10ᘔ | 128 | 146 | 164 | 182 | 1ᘔ0 | 1Ɛᘔ | 218 | 236 | 254 | 272 | 290 | 2ᘔᘔ | 308 | 326 | 344 | 362 | 380 |
1Ɛ | 0 | 1Ɛ | 3ᘔ | 59 | 78 | 97 | Ɛ6 | 115 | 134 | 153 | 172 | 191 | 1Ɛ0 | 20Ɛ | 22ᘔ | 249 | 268 | 287 | 2ᘔ6 | 305 | 324 | 343 | 362 | 381 | 3ᘔ0 |
20 | 0 | 20 | 40 | 60 | 80 | ᘔ0 | 100 | 120 | 140 | 160 | 180 | 1ᘔ0 | 200 | 220 | 240 | 260 | 280 | 2ᘔ0 | 300 | 320 | 340 | 360 | 380 | 3ᘔ0 | 400 |
Conversion tables to and from decimal[]
To convert numbers between bases, one can use the general conversion algorithm (see the relevant section under positional notation). Alternatively, one can use digit-conversion tables. The ones provided below can be used to convert any duodecimal number between 0.01 and ƐƐƐ,ƐƐƐ.ƐƐ to decimal, or any decimal number between 0.01 and 999,999.99 to duodecimal. To use them, the given number must first be decomposed into a sum of numbers with only one significant digit each. For example:
- 123,456.78 = 100,000 + 20,000 + 3,000 + 400 + 50 + 6 + 0.7 + 0.08
This decomposition works the same no matter what base the number is expressed in. Just isolate each non-zero digit, padding them with as many zeros as necessary to preserve their respective place values. If the digits in the given number include zeroes (for example, 102,304.05), these are, of course, left out in the digit decomposition (102,304.05 = 100,000 + 2,000 + 300 + 4 + 0.05). Then the digit conversion tables can be used to obtain the equivalent value in the target base for each digit. If the given number is in duodecimal and the target base is decimal, we get:
- (duodecimal) 100,000 + 20,000 + 3,000 + 400 + 50 + 6 + 0.7 + 0.08 = (decimal) 248,832 + 41,472 + 5,184 + 576 + 60 + 6 + 0.583333333333... + 0.055555555555...
Now, because the summands are already converted to base ten, the usual decimal arithmetic is used to perform the addition and recompose the number, arriving at the conversion result:
Duodecimal -----> Decimal 100,000 = 248,832 20,000 = 41,472 3,000 = 5,184 400 = 576 50 = 60 + 6 = + 6 0.7 = 0.583333333333... 0.08 = 0.055555555555... -------------------------------------------- 123,456.78 = 296,130.638888888888...
That is, (duodecimal) 123,456.78 equals (decimal) 296,130.638 ≈ 296,130.64
If the given number is in decimal and the target base is duodecimal, the method is basically same. Using the digit conversion tables:
(decimal) 100,000 + 20,000 + 3,000 + 400 + 50 + 6 + 0.7 + 0.08 = (duodecimal) 49,ᘔ54 + Ɛ,6ᘔ8 + 1,8ᘔ0 + 294 + 42 + 6 + 0.849724972497249724972497... + 0.0Ɛ62ᘔ68781Ɛ05915343ᘔ0Ɛ62...
However, in order to do this sum and recompose the number, now the addition tables for the duodecimal system have to be used, instead of the addition tables for decimal most people are already familiar with, because the summands are now in base twelve and so the arithmetic with them has to be in duodecimal as well. In decimal, 6 + 6 equals 12, but in duodecimal it equals 10; so, if using decimal arithmetic with duodecimal numbers one would arrive at an incorrect result. Doing the arithmetic properly in duodecimal, one gets the result:
Decimal -----> Duodecimal 100,000 = 49,ᘔ54 20,000 = Ɛ,6ᘔ8 3,000 = 1,8ᘔ0 400 = 294 50 = 42 + 6 = + 6 0.7 = 0.849724972497249724972497... 0.08 = 0.0Ɛ62ᘔ68781Ɛ05915343ᘔ0Ɛ62... -------------------------------------------------------- 123,456.78 = 5Ɛ,540.943ᘔ0Ɛ62ᘔ68781Ɛ05915343ᘔ...
That is, (decimal) 123,456.78 equals (duodecimal) 5Ɛ,540.943ᘔ0Ɛ62ᘔ68781Ɛ059153... ≈ 5Ɛ,540.94
Duodecimal to decimal digit conversion[]
Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1,000,000 | 2,985,984 | 100,000 | 248,832 | 10,000 | 20,736 | 1,000 | 1,728 | 100 | 144 | 10 | 12 | 1 | 1 | 0.1 | 0.083 | 0.01 | 0.00694 |
2,000,000 | 5,971,968 | 200,000 | 497,664 | 20,000 | 41,472 | 2,000 | 3,456 | 200 | 288 | 20 | 24 | 2 | 2 | 0.2 | 0.16 | 0.02 | 0.0138 |
3,000,000 | 8,957,952 | 300,000 | 746,496 | 30,000 | 62,208 | 3,000 | 5,184 | 300 | 432 | 30 | 36 | 3 | 3 | 0.3 | 0.25 | 0.03 | 0.02083 |
4,000,000 | 11,943,936 | 400,000 | 995,328 | 40,000 | 82,944 | 4,000 | 6,912 | 400 | 576 | 40 | 48 | 4 | 4 | 0.4 | 0.3 | 0.04 | 0.027 |
5,000,000 | 14,929,920 | 500,000 | 1,244,160 | 50,000 | 103,680 | 5,000 | 8,640 | 500 | 720 | 50 | 60 | 5 | 5 | 0.5 | 0.416 | 0.05 | 0.03472 |
6,000,000 | 17,915,904 | 600,000 | 1,492,992 | 60,000 | 124,416 | 6,000 | 10,368 | 600 | 864 | 60 | 72 | 6 | 6 | 0.6 | 0.5 | 0.06 | 0.0416 |
7,000,000 | 20,901,888 | 700,000 | 1,741,824 | 70,000 | 145,152 | 7,000 | 12,096 | 700 | 1,008 | 70 | 84 | 7 | 7 | 0.7 | 0.583 | 0.07 | 0.04861 |
8,000,000 | 23,887,872 | 800,000 | 1,990,656 | 80,000 | 165,888 | 8,000 | 13,824 | 800 | 1,152 | 80 | 96 | 8 | 8 | 0.8 | 0.6 | 0.08 | 0.05 |
9,000,000 | 26,873,856 | 900,000 | 2,239,488 | 90,000 | 186,624 | 9,000 | 15,552 | 900 | 1,296 | 90 | 108 | 9 | 9 | 0.9 | 0.75 | 0.09 | 0.0625 |
ᘔ,000,000 | 29,859,840 | ᘔ00,000 | 2,488,320 | ᘔ0,000 | 207,360 | ᘔ,000 | 17,280 | ᘔ00 | 1,440 | ᘔ0 | 120 | ᘔ | 10 | 0.ᘔ | 0.83 | 0.0ᘔ | 0.0694 |
Ɛ,000,000 | 32,845,824 | Ɛ00,000 | 2,737,152 | Ɛ0,000 | 228,096 | Ɛ,000 | 19,008 | Ɛ00 | 1,584 | Ɛ0 | 132 | Ɛ | 11 | 0.Ɛ | 0.916 | 0.0Ɛ | 0.07638 |
Decimal to duodecimal digit conversion[]
Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100,000 | 49,ᘔ54 | 10,000 | 5,954 | 1,000 | 6Ɛ4 | 100 | 84 | 10 | ᘔ | 1 | 1 | 0.1 | 0.12497 | 0.01 | 0.015343ᘔ0Ɛ62ᘔ68781Ɛ059 |
200,000 | 97,8ᘔ8 | 20,000 | Ɛ,6ᘔ8 | 2,000 | 1,1ᘔ8 | 200 | 148 | 20 | 18 | 2 | 2 | 0.2 | 0.2497 | 0.02 | 0.02ᘔ68781Ɛ05915343ᘔ0Ɛ6 |
300,000 | 125,740 | 30,000 | 15,440 | 3,000 | 1,8ᘔ0 | 300 | 210 | 30 | 26 | 3 | 3 | 0.3 | 0.37249 | 0.03 | 0.043ᘔ0Ɛ62ᘔ68781Ɛ059153 |
400,000 | 173,594 | 40,000 | 1Ɛ,194 | 4,000 | 2,394 | 400 | 294 | 40 | 34 | 4 | 4 | 0.4 | 0.4972 | 0.04 | 0.05915343ᘔ0Ɛ62ᘔ68781Ɛ |
500,000 | 201,428 | 50,000 | 24,Ɛ28 | 5,000 | 2,ᘔ88 | 500 | 358 | 50 | 42 | 5 | 5 | 0.5 | 0.6 | 0.05 | 0.07249 |
600,000 | 24Ɛ,280 | 60,000 | 2ᘔ,880 | 6,000 | 3,580 | 600 | 420 | 60 | 50 | 6 | 6 | 0.6 | 0.7249 | 0.06 | 0.08781Ɛ05915343ᘔ0Ɛ62ᘔ6 |
700,000 | 299,114 | 70,000 | 34,614 | 7,000 | 4,074 | 700 | 4ᘔ4 | 70 | 5ᘔ | 7 | 7 | 0.7 | 0.84972 | 0.07 | 0.0ᘔ0Ɛ62ᘔ68781Ɛ05915343 |
800,000 | 326,Ɛ68 | 80,000 | 3ᘔ,368 | 8,000 | 4,768 | 800 | 568 | 80 | 68 | 8 | 8 | 0.8 | 0.9724 | 0.08 | 0.0Ɛ62ᘔ68781Ɛ05915343ᘔ |
900,000 | 374,ᘔ00 | 90,000 | 44,100 | 9,000 | 5,260 | 900 | 630 | 90 | 76 | 9 | 9 | 0.9 | 0.ᘔ9724 | 0.09 | 0.10Ɛ62ᘔ68781Ɛ05915343ᘔ |
Conversion of powers[]
Exponent | b=2 | b=3 | b=4 | b=5 | b=6 | b=7 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | |
b6 | 64 | 54 | 729 | 509 | 4,096 | 2,454 | 15,625 | 9,061 | 46,656 | 23,000 | 117,649 | 58,101 |
b5 | 32 | 28 | 243 | 183 | 1,024 | 714 | 3,125 | 1,985 | 7,776 | 4,600 | 16,807 | 9,887 |
b4 | 16 | 14 | 81 | 69 | 256 | 194 | 625 | 441 | 1,296 | 900 | 2,401 | 1,481 |
b3 | 8 | 8 | 27 | 23 | 64 | 54 | 125 | ᘔ5 | 216 | 160 | 343 | 247 |
b2 | 4 | 4 | 9 | 9 | 16 | 14 | 25 | 21 | 36 | 30 | 49 | 41 |
b1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 |
b−1 | 0.5 | 0.6 | 0.3 | 0.4 | 0.25 | 0.3 | 0.2 | 0.2497 | 0.16 | 0.2 | 0.142857 | 0.186ᘔ35 |
b−2 | 0.25 | 0.3 | 0.1 | 0.14 | 0.0625 | 0.09 | 0.04 | 0.05915343ᘔ0 Ɛ62ᘔ68781Ɛ |
0.027 | 0.04 | 0.0204081632653 06122448979591 836734693877551 |
0.02Ɛ322547ᘔ05ᘔ 644ᘔ9380Ɛ908996 741Ɛ615771283Ɛ |
Exponent | b=8 | b=9 | b=10 | b=11 | b=12 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | |
b6 | 262,144 | 107,854 | 531,441 | 217,669 | 1,000,000 | 402,854 | 1,771,561 | 715,261 | 2,985,984 | 1,000,000 |
b5 | 32,768 | 16,Ɛ68 | 59,049 | 2ᘔ,209 | 100,000 | 49,ᘔ54 | 161,051 | 79,24Ɛ | 248,832 | 100,000 |
b4 | 4,096 | 2,454 | 6,561 | 3,969 | 10,000 | 5,954 | 14,641 | 8,581 | 20,736 | 10,000 |
b3 | 512 | 368 | 729 | 509 | 1,000 | 6Ɛ4 | 1,331 | 92Ɛ | 1,728 | 1,000 |
b2 | 64 | 54 | 81 | 69 | 100 | 84 | 121 | ᘔ1 | 144 | 100 |
b1 | 8 | 8 | 9 | 9 | 10 | ᘔ | 11 | Ɛ | 12 | 10 |
b−1 | 0.125 | 0.16 | 0.1 | 0.14 | 0.1 | 0.12497 | 0.09 | 0.1 | 0.083 | 0.1 |
b−2 | 0.015625 | 0.023 | 0.012345679 | 0.0194 | 0.01 | 0.015343ᘔ0Ɛ6 2ᘔ68781Ɛ059 |
0.00826446280 99173553719 |
0.0123456789Ɛ | 0.00694 | 0.01 |
Some properties[]
(In this section, all numbers are written with duodecimal, using ᘔ for ten and Ɛ for eleven, unless other bases mentioned)
All squares end with square digits (i.e. end with 0, 1, 4 or 9), if n is divisible by both 2 and 3, then n2 ends with 0, if n is not divisible by 2 or 3, then n2 ends with 1, if n is divisible by 2 but not by 3, then n2 ends with 4, if n is not divisible by 2 but by 3, then n2 ends with 9. If the unit digit of n2 is 0, then the dozens digit of n2 is either 0 or 3, if the unit digit of n2 is 1, then the dozens digit of n2 is even, if the unit digit of n2 is 4, then the dozen digit of n2 is 0, 1, 4, 5, 8 or 9, if the unit digit of n2 is 9, then the dozen digit of n2 is either 0 or 6. (More specially, all squares of (primes ≥ 5) end with 1)
The digital root of a square is 1, 3, 4, 5 or Ɛ.
No repdigits with more than one digit are squares, in fact, a square cannot end with three same digits except 000. (In contrast, in the decimal (base ᘔ) system squares may end in 444, the smallest example is 322 = ᘔ04 = 1444(ᘔ))
No four-digit palindromic numbers are squares. (we can easily to prove it, since all four-digit palindromic number are divisible by 11, and since they are squares, thus they must be divisible by 112 = 121, and the only four-digit palindromic number divisible by 121 are 1331, 2662, 3993, 5225, 6556, 7887, 8ƐƐ8, 9119, ᘔ44ᘔ and Ɛ77Ɛ, but none of them are squares)
n | n-digit palindromic squares | square roots | number of n-digit palindromic squares |
---|---|---|---|
1 | 1, 4, 9 | 1, 2, 3 | 3 |
2 | none | none | 0 |
3 | 121, 484 | 11, 22 | 2 |
4 | none | none | 0 |
5 | 10201, 12321, 14641, 16661, 16Ɛ61, 40804, 41414, 44944 | 101, 111, 121, 12Ɛ, 131, 202, 204, 212 | 8 |
6 | 160061 | 42Ɛ | 1 |
7 | 1002001, 102ᘔ201, 1093901, 1234321, 148ᘔ841, 4008004, 445ᘔ544, 49ᘔᘔᘔ94 | 1001, 1015, 1047, 1111, 1221, 2002, 2112, 2244 | 8 |
8 | none | none | 0 |
9 | 100020001, 102030201, 104060401, 1060Ɛ0601, 121242121, 123454321, 125686521, 1420Ɛ0241, 1444ᘔ4441, 1468Ɛ8641, 14ᘔ797ᘔ41, 1621Ɛ1261, 163151361, 1ᘔᘔ222ᘔᘔ1, 400080004, 404090404, 410212014, 4414ᘔ4144, 4456Ɛ6544, 496787694, 963848369 | 10001, 10101, 10201, 10301, 11011, 11111, 11211, 11Ɛ21, 12021, 12121, 1229Ɛ, 1292Ɛ, 12977, 14685, 20002, 20102, 20304, 21012, 21112, 22344, 31053 | 19 |
ᘔ | 1642662461 | 434ᘔ5 | 1 |
Ɛ | 10000200001, 10221412201, 10444ᘔ44401, 12102420121, 12345654321, 141Ɛ1Ɛ1Ɛ141, 14404ᘔ40441, 16497679461, 40000800004, 40441ᘔ14404, 41496869414, 44104ᘔ40144, 49635653694 | 100001, 101101, 102201, 110011, 111111, 11Ɛ13Ɛ, 120021, 12ᘔ391, 200002, 201102, 204204, 210012, 223344 | 11 |
10 | none | none | 0 |
It is conjectured that if n is divisible by 4, then there are no n-digit palindromic squares.
Rn2 (where Rn is the repunit with length n) is a palindromic number for n ≤ Ɛ, but not for n ≥ 10 (thus, for all odd number n ≤ 19, ther is n-digit palindromic square 123...321), besides, 11n (also 1{0}1n, i.e. 101n, 1001n, 10001n, etc.) is a palindromic number for n ≤ 5, but not for n ≥ 6, and it is conjectured that no palindromic numbers are n-th powers if n ≥ 6.
A cube can end with all digits except 2, 6 and ᘔ (in fact, no perfect powers end with 2, 6 or ᘔ), if n is not congruent to 2 mod 4, then n3 ends with the same digit as n; if n is congruent to 2 mod 4, then n3 ends with the digit (the last digit of n +− 6).
The digital root of a cube can be any number.
If k≥2, then nk+2 ends with the same digit as nk, thus, if i≥2, j≥2 and i and j have the same parity, then ni and nj end with the same digit.
Except for 6 and 24, all even perfect numbers end with 54. Additionally, except for 6, 24 and 354, all even perfect numbers end with 054 or 854. Besides, if any odd perfect number exists, then it must end with 1, 09, 39, 69 or 99.
The digital root of an even perfect number is 1, 4, 6 or ᘔ.
Since 10 is the smallest abundant number, all numbers end with 0 are abundant numbers, besides, all numbers end with 6 except 6 itself are also abundant numbers.
k n |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ᘔ | Ɛ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1ᘔ | 1Ɛ | 20 | Period |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 2 |
3 | 1 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 2 |
4 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 |
5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 2 |
6 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 2 |
8 | 1 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 2 |
9 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 1 |
ᘔ | 1 | ᘔ | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 |
Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | 2 |
10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
12 | 1 | 2 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 2 |
13 | 1 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 3 | 9 | 2 |
14 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 |
15 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 2 |
16 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
17 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 2 |
18 | 1 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 4 | 2 |
19 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 1 |
1ᘔ | 1 | ᘔ | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 |
1Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | Ɛ | 1 | 2 |
20 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
The period of the unit digits of powers of a number must be a divisor of 2 (= λ(10), where λ is the Carmichael function).
n | possible unit digit of an nth power |
---|---|
0 | 1 |
1 | any number |
even number ≥ 2 | 0, 1, 4, 9 (the square digits) |
odd number ≥ 3 | 0, 1, 3, 4, 5, 7, 8, 9, Ɛ (all digits != 2 mod 4) |
k n |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ᘔ | Ɛ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1ᘔ | 1Ɛ | 20 | Period |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 01 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 1 |
1 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 1 |
2 | 01 | 02 | 04 | 08 | 14 | 28 | 54 | ᘔ8 | 94 | 68 | 14 | 28 | 54 | ᘔ8 | 94 | 68 | 14 | 28 | 54 | ᘔ8 | 94 | 68 | 14 | 28 | 54 | 6 |
3 | 01 | 03 | 09 | 23 | 69 | 83 | 09 | 23 | 69 | 83 | 09 | 23 | 69 | 83 | 09 | 23 | 69 | 83 | 09 | 23 | 69 | 83 | 09 | 23 | 69 | 4 |
4 | 01 | 04 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 3 |
5 | 01 | 05 | 21 | ᘔ5 | 41 | 85 | 61 | 65 | 81 | 45 | ᘔ1 | 25 | 01 | 05 | 21 | ᘔ5 | 41 | 85 | 61 | 65 | 81 | 45 | ᘔ1 | 25 | 01 | 10 |
6 | 01 | 06 | 30 | 60 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 1 |
7 | 01 | 07 | 41 | 47 | 81 | 87 | 01 | 07 | 41 | 47 | 81 | 87 | 01 | 07 | 41 | 47 | 81 | 87 | 01 | 07 | 41 | 47 | 81 | 87 | 01 | 6 |
8 | 01 | 08 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 68 | 54 | 2 |
9 | 01 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 09 | 69 | 2 |
ᘔ | 01 | 0ᘔ | 84 | Ɛ4 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 1 |
Ɛ | 01 | 0Ɛ | ᘔ1 | 2Ɛ | 81 | 4Ɛ | 61 | 6Ɛ | 41 | 8Ɛ | 21 | ᘔƐ | 01 | 0Ɛ | ᘔ1 | 2Ɛ | 81 | 4Ɛ | 61 | 6Ɛ | 41 | 8Ɛ | 21 | ᘔƐ | 01 | 10 |
10 | 01 | 10 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 1 |
11 | 01 | 11 | 21 | 31 | 41 | 51 | 61 | 71 | 81 | 91 | ᘔ1 | Ɛ1 | 01 | 11 | 21 | 31 | 41 | 51 | 61 | 71 | 81 | 91 | ᘔ1 | Ɛ1 | 01 | 10 |
12 | 01 | 12 | 44 | 08 | 94 | ᘔ8 | 54 | 28 | 14 | 68 | 94 | ᘔ8 | 54 | 28 | 14 | 68 | 94 | ᘔ8 | 54 | 28 | 14 | 68 | 94 | ᘔ8 | 54 | 6 |
13 | 01 | 13 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 53 | 69 | 2 |
14 | 01 | 14 | 94 | 54 | 14 | 94 | 54 | 14 | 94 | 54 | 14 | 94 | 54 | 14 | 94 | 54 | 14 | 94 | 54 | 14 | 94 | 54 | 14 | 94 | 54 | 3 |
15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 15 | 01 | 2 |
16 | 01 | 16 | 30 | 60 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 1 |
17 | 01 | 17 | 61 | 77 | 01 | 17 | 61 | 77 | 01 | 17 | 61 | 77 | 01 | 17 | 61 | 77 | 01 | 17 | 61 | 77 | 01 | 17 | 61 | 77 | 01 | 4 |
18 | 01 | 18 | 94 | 68 | 14 | 28 | 54 | ᘔ8 | 94 | 68 | 14 | 28 | 54 | ᘔ8 | 94 | 68 | 14 | 28 | 54 | ᘔ8 | 94 | 68 | 14 | 28 | 54 | 6 |
19 | 01 | 19 | 09 | 39 | 69 | 99 | 09 | 39 | 69 | 99 | 09 | 39 | 69 | 99 | 09 | 39 | 69 | 99 | 09 | 39 | 69 | 99 | 09 | 39 | 69 | 4 |
1ᘔ | 01 | 1ᘔ | 44 | Ɛ4 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 94 | 14 | 54 | 3 |
1Ɛ | 01 | 1Ɛ | 81 | 5Ɛ | 41 | 9Ɛ | 01 | 1Ɛ | 81 | 5Ɛ | 41 | 9Ɛ | 01 | 1Ɛ | 81 | 5Ɛ | 41 | 9Ɛ | 01 | 1Ɛ | 81 | 5Ɛ | 41 | 9Ɛ | 01 | 6 |
20 | 01 | 20 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 1 |
The period of the final two digits of powers of a number must be a divisor of 10 (= λ(100)).
More generally, for every n≥2, the period of the final n digits of powers of a number must be a divisor of 10n−1 (= λ(10n)).
k n |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ᘔ | Ɛ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1ᘔ | 1Ɛ | 20 | Period |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 4 | 8 | 5 | ᘔ | 9 | 7 | 3 | 6 | 1 | 2 | 4 | 8 | 5 | ᘔ | 9 | 7 | 3 | 6 | 1 | 2 | 4 | 8 | 5 | ᘔ |
3 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 5 |
4 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 5 |
5 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 5 |
6 | 1 | 6 | 3 | 7 | 9 | ᘔ | 5 | 8 | 4 | 2 | 1 | 6 | 3 | 7 | 9 | ᘔ | 5 | 8 | 4 | 2 | 1 | 6 | 3 | 7 | 9 | ᘔ |
7 | 1 | 7 | 5 | 2 | 3 | ᘔ | 4 | 6 | 9 | 8 | 1 | 7 | 5 | 2 | 3 | ᘔ | 4 | 6 | 9 | 8 | 1 | 7 | 5 | 2 | 3 | ᘔ |
8 | 1 | 8 | 9 | 6 | 4 | ᘔ | 3 | 2 | 5 | 7 | 1 | 8 | 9 | 6 | 4 | ᘔ | 3 | 2 | 5 | 7 | 1 | 8 | 9 | 6 | 4 | ᘔ |
9 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 5 |
ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | 2 |
Ɛ | 1 | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | 1 |
10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
11 | 1 | 2 | 4 | 8 | 5 | ᘔ | 9 | 7 | 3 | 6 | 1 | 2 | 4 | 8 | 5 | ᘔ | 9 | 7 | 3 | 6 | 1 | 2 | 4 | 8 | 5 | ᘔ |
12 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 1 | 3 | 9 | 5 | 4 | 5 |
13 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 1 | 4 | 5 | 9 | 3 | 5 |
14 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 1 | 5 | 3 | 4 | 9 | 5 |
15 | 1 | 6 | 3 | 7 | 9 | ᘔ | 5 | 8 | 4 | 2 | 1 | 6 | 3 | 7 | 9 | ᘔ | 5 | 8 | 4 | 2 | 1 | 6 | 3 | 7 | 9 | ᘔ |
16 | 1 | 7 | 5 | 2 | 3 | ᘔ | 4 | 6 | 9 | 8 | 1 | 7 | 5 | 2 | 3 | ᘔ | 4 | 6 | 9 | 8 | 1 | 7 | 5 | 2 | 3 | ᘔ |
17 | 1 | 8 | 9 | 6 | 4 | ᘔ | 3 | 2 | 5 | 7 | 1 | 8 | 9 | 6 | 4 | ᘔ | 3 | 2 | 5 | 7 | 1 | 8 | 9 | 6 | 4 | ᘔ |
18 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 1 | 9 | 4 | 3 | 5 | 5 |
19 | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | ᘔ | 1 | 2 |
1ᘔ | 1 | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | Ɛ | 1 |
1Ɛ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
20 | 1 | 2 | 4 | 8 | 5 | ᘔ | 9 | 7 | 3 | 6 | 1 | 2 | 4 | 8 | 5 | ᘔ | 9 | 7 | 3 | 6 | 1 | 2 | 4 | 8 | 5 | ᘔ |
The period of the digital roots of powers of a number must be a divisor of ᘔ (= λ(Ɛ)).
n | possible digital root of an nth power |
---|---|
0 | 1 |
= 1, 3, 7, 9 (mod ᘔ) | any number |
= 2, 4, 6, 8 (mod ᘔ) | 1, 3, 4, 5, 9, Ɛ |
= 5 (mod ᘔ) | 1, ᘔ, Ɛ |
> 0 and divisible by ᘔ | 1, Ɛ |
The unit digit of a Fibonacci number can be any digit except 6 (if the unit digit of a Fibonacci number is 0, then the dozens digit of this number must also be 0, thus, all Fibonacci numbers divisible by 6 are also divisible by 100), and the unit digit of a Lucas number cannot be 0 or 9 (thus, no Lucas number is divisible by 10), besides, if a Lucas number ends with 2, then it must end with 0002, i.e., this number is congruent to 2 mod 104.
In the following table, Fn is the n-th Fibonacci number, and Ln is the n-th Lucas number.
n | Fn | digit root of Fn | Ln | digit root of Ln | n | Fn | digit root of Fn | Ln | digit root of Ln |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 21 | 37501 | 5 | 81101 | Ɛ |
2 | 1 | 1 | 3 | 3 | 22 | 5ᘔ301 | 8 | 111103 | 7 |
3 | 2 | 2 | 4 | 4 | 23 | 95802 | 2 | 192204 | 7 |
4 | 3 | 3 | 7 | 7 | 24 | 133Ɛ03 | ᘔ | 2ᘔ3307 | 3 |
5 | 5 | 5 | Ɛ | Ɛ | 25 | 209705 | 1 | 47550Ɛ | ᘔ |
6 | 8 | 8 | 16 | 7 | 26 | 341608 | Ɛ | 758816 | 2 |
7 | 11 | 2 | 25 | 7 | 27 | 54Ɛ111 | 1 | 1012125 | 1 |
8 | 19 | ᘔ | 3Ɛ | 3 | 28 | 890719 | 1 | 176ᘔ93Ɛ | 3 |
9 | 2ᘔ | 1 | 64 | ᘔ | 29 | 121Ɛ82ᘔ | 2 | 2780ᘔ64 | 4 |
ᘔ | 47 | Ɛ | ᘔ3 | 2 | 2ᘔ | 1ᘔƐ0347 | 3 | 432Ɛ7ᘔ3 | 7 |
Ɛ | 75 | 1 | 147 | 1 | 2Ɛ | 310ƐƐ75 | 5 | 6ᘔƐ0647 | Ɛ |
10 | 100 | 1 | 22ᘔ | 3 | 30 | 5000300 | 8 | Ɛ22022ᘔ | 7 |
11 | 175 | 2 | 375 | 4 | 31 | 8110275 | 2 | 16110875 | 7 |
12 | 275 | 3 | 5ᘔ3 | 7 | 32 | 11110575 | ᘔ | 25330ᘔᘔ3 | 3 |
13 | 42ᘔ | 5 | 958 | Ɛ | 33 | 1922082ᘔ | 1 | 3Ɛ441758 | ᘔ |
14 | 6ᘔ3 | 8 | 133Ɛ | 7 | 34 | 2ᘔ3311ᘔ3 | Ɛ | 6477263Ɛ | 2 |
15 | Ɛ11 | 2 | 2097 | 7 | 35 | 47551ᘔ11 | 1 | ᘔ3ƐƐ4197 | 1 |
16 | 15Ɛ4 | ᘔ | 3416 | 3 | 36 | 75882ƐƐ4 | 1 | 148766816 | 3 |
17 | 2505 | 1 | 54Ɛ1 | ᘔ | 37 | 101214ᘔ05 | 2 | 23075ᘔ9Ɛ1 | 4 |
18 | 3ᘔƐ9 | Ɛ | 8907 | 2 | 38 | 176ᘔ979Ɛ9 | 3 | 379305607 | 7 |
19 | 6402 | 1 | 121Ɛ8 | 1 | 39 | 2780Ɛ0802 | 5 | 5ᘔ9ᘔ643Ɛ8 | Ɛ |
1ᘔ | ᘔ2ƐƐ | 1 | 1ᘔƐ03 | 3 | 3ᘔ | 432Ɛ885ƐƐ | 8 | 967169ᘔ03 | 7 |
1Ɛ | 14701 | 2 | 310ƐƐ | 4 | 3Ɛ | 6ᘔƐ079201 | 2 | 13550121ƐƐ | 7 |
20 | 22ᘔ00 | 3 | 50002 | 7 | 40 | Ɛ22045800 | ᘔ | 2100180002 | 3 |
(Note that F2ᘔ begins with L1ᘔ, and F2Ɛ begins with L1Ɛ)
The period of the digit root of Fibonacci numbers is ᘔ.
The period of the unit digit of Fibonacci numbers is 20, the final two digits is also 20, the final three digits is 200, the final four digits is 2000, ..., the final n digits is 2×10n−1 (n ≥ 2).
There are only 13 possible values (of the totally 100 values, thus only 13%) of the final two digits of a Fibonacci number (see (sequence A066853 in the OEIS)).
Except 0 = F0 and 1 = F1 = F2, the only square Fibonacci number is 100 = F10 (100 is the square of 10), thus, 10 is the only base such that 100 is a Fibonacci number (since 100 in a base is just the square of this base, and 0 and 1 cannot be the base of numeral system), and thus we can make the near value of the golden ratio: F11/F10 = 175/100 = 1.75 (since the ratio of two connected Fibonacci numbers is close to the golden ratio, as the numbers get large). Besides, the only cube Fibonacci number is 8 = F6.
n | 2n | n | 2n | n | 2n | n | 2n | n | 2n | n | 2n |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 21 | Ɛ2ᘔ20ᘔ8 | 41 | 5317Ɛ5804588ᘔ8 | 61 | 256906ᘔ1ᘔ93096Ɛ8934ᘔ8 | 81 | 11ᘔ12ᘔ743504482569888538ᘔ0ᘔ8 | ᘔ1 | 65933Ɛ8691303ᘔ448Ɛ712227ᘔ7Ɛ11448ᘔ8 |
2 | 4 | 22 | 1ᘔ584194 | 42 | ᘔ633ᘔƐ408Ɛ5594 | 62 | 4Ɛ161183966171Ɛ566994 | 82 | 238259286ᘔ08944Ɛ17554ᘔ758194 | ᘔ2 | 10Ɛ667Ɛ51626078895Ɛ22445393ᘔ2289594 |
3 | 8 | 23 | 38Ɛ48368 | 43 | 190679ᘔ815ᘔᘔƐ68 | 63 | 9ᘔ302347710323ᘔƐ11768 | 83 | 4744Ɛ6551815689ᘔ32ᘔᘔ992Ɛ4368 | ᘔ3 | 21Ɛ113ᘔᘔ305013556Ɛᘔ4488ᘔ76784556Ɛ68 |
4 | 14 | 24 | 75ᘔ94714 | 44 | 361137942Ɛ99Ɛ14 | 64 | 1786046932206479ᘔ23314 | 84 | 9289Ɛ0ᘔᘔ342Ɛ15786599765ᘔ8714 | ᘔ4 | 43ᘔ2279860ᘔ026ᘔƐ1Ɛ88955931348ᘔƐ1Ɛ14 |
5 | 28 | 25 | 12Ɛ969228 | 45 | 702273685Ɛ77ᘔ28 | 65 | 3350091664410937846628 | 85 | 16557ᘔ198685ᘔ2Ɛ350Ɛ7730Ɛ95228 | ᘔ5 | 878453750180519ᘔ3Ɛ556ᘔƐ6626959ᘔ3ᘔ28 |
6 | 54 | 26 | 25Ɛ716454 | 46 | 120452714ƐƐ33854 | 66 | 66ᘔ0163108821673491054 | 86 | 30ᘔƐ3837514Ɛ85ᘔ6ᘔ1Ɛ3261Ɛ6ᘔ454 | ᘔ6 | 15348ᘔ72ᘔ0340ᘔ3787ᘔᘔƐ19Ɛ10516Ɛ787854 |
7 | ᘔ8 | 27 | 4ƐƐ2308ᘔ8 | 47 | 2408ᘔ5229Ɛᘔ674ᘔ8 | 67 | 111803062154431269620ᘔ8 | 87 | 619ᘔ7472ᘔ29Ɛ4Ɛ9183ᘔ6503Ɛ188ᘔ8 | ᘔ7 | 2ᘔ695925806818735399ᘔ37ᘔ20ᘔ31Ɛ3534ᘔ8 |
8 | 194 | 28 | 9Ɛᘔ461594 | 48 | 48158ᘔ457Ɛ912994 | 68 | 2234061042ᘔ886251704194 | 88 | 103792925857ᘔ9Ɛ634790ᘔ07ᘔ35594 | ᘔ8 | 5916Ɛ64Ɛ41143526ᘔ777873841863ᘔ6ᘔ6994 |
9 | 368 | 29 | 17Ɛ8902Ɛ68 | 49 | 942Ɛ588Ɛ3Ɛ625768 | 69 | 446810208595504ᘔ3208368 | 89 | 20736564Ɛ4Ɛ397Ɛ06936181386ᘔƐ68 | ᘔ9 | Ɛ631Ɛ09ᘔ82286ᘔ5193335274835079191768 |
ᘔ | 714 | 2ᘔ | 33Ɛ5605Ɛ14 | 4ᘔ | 1685ᘔƐ55ᘔ7Ɛ04Ɛ314 | 6ᘔ | 891420414Ɛ6ᘔᘔ0986414714 | 8ᘔ | 41270Ɛ09ᘔ9ᘔ773ᘔ116703427519Ɛ14 | ᘔᘔ | 1Ɛ063ᘔ179445518ᘔ36666ᘔ52946ᘔ136363314 |
Ɛ | 1228 | 2Ɛ | 67ᘔƐ00Ɛᘔ28 | 4Ɛ | 314Ɛ9ᘔᘔƐ93ᘔ09ᘔ628 | 6Ɛ | 1562840829Ɛ1981750829228 | 8Ɛ | 82521ᘔ179793278231206852ᘔ37ᘔ28 | ᘔƐ | 3ᘔ107833688ᘔᘔ358711118ᘔ56918270706628 |
10 | 2454 | 30 | 1139ᘔ01Ɛ854 | 50 | 629Ɛ799Ɛ678179054 | 70 | 2Ɛ05481457ᘔ37432ᘔ1456454 | 90 | 144ᘔ4383373665344624114ᘔ5873854 | Ɛ0 | 78213467155986Ɛ52222358Ɛ1634521211054 |
11 | 48ᘔ8 | 31 | 2277803Ɛ4ᘔ8 | 51 | 1057Ɛ377Ɛ1343360ᘔ8 | 71 | 5ᘔ0ᘔ9428Ɛ3872865828Ɛ08ᘔ8 | 91 | 2898874672710ᘔ6890482298Ɛ5274ᘔ8 | Ɛ1 | 1344269122ᘔƐ751ᘔᘔ44446Ɛ5ᘔ3068ᘔ424220ᘔ8 |
12 | 9594 | 32 | 4533407ᘔ994 | 52 | 20Ɛ3ᘔ733ᘔ268670194 | 72 | Ɛ8196855ᘔ752550Ɛ455ᘔ1594 | 92 | 557552912522191560944575ᘔᘔ52994 | Ɛ2 | 26885162459Ɛ2ᘔ39888891ᘔƐ86115884844194 |
13 | 16Ɛ68 | 33 | 8ᘔ668139768 | 53 | 41ᘔ792678515120368 | 73 | 1Ɛ43714ᘔƐ92ᘔ4ᘔᘔ1ᘔ8ᘔƐ82Ɛ68 | 93 | ᘔƐ2ᘔᘔ5624ᘔ44362Ɛ01688Ɛ2Ɛ98ᘔ5768 | Ɛ3 | 5154ᘔ3048Ɛ7ᘔ58775555639Ɛ5022Ɛ549488368 |
14 | 31Ɛ14 | 34 | 159114277314 | 54 | 839365134ᘔ2ᘔ240714 | 74 | 3ᘔ872299Ɛ6589983959Ɛ45Ɛ14 | 94 | 19ᘔ598Ɛ049888705ᘔ03155ᘔ5Ɛ758Ɛ314 | Ɛ4 | ᘔ2ᘔ986095Ɛ38Ɛ532ᘔᘔᘔƐ077ᘔᘔ045ᘔᘔ96954714 |
15 | 63ᘔ28 | 35 | 2Ɛ6228532628 | 55 | 147670ᘔ269858481228 | 75 | 79524577Ɛ0Ɛ577476Ɛ7ᘔ8Ɛᘔ28 | 95 | 378Ɛ75ᘔ09755520Ɛ8062ᘔƐ8ƐƐ2Ɛ5ᘔ628 | Ɛ5 | 185975016Ɛᘔ75ᘔᘔ65999ᘔ1339808Ɛ99716ᘔ9228 |
16 | 107854 | 36 | 5Ɛ0454ᘔ65054 | 56 | 29312185174Ɛ4942454 | 76 | 136ᘔ48Ɛ33ᘔ1ᘔƐ32931Ɛ395Ɛ854 | 96 | 735Ɛ2Ɛ8172ᘔᘔᘔ41Ɛ41059Ɛ5Ɛᘔ5ᘔƐ9054 | Ɛ6 | 34Ɛ72ᘔ031Ɛ92Ɛ990Ɛ77782677415Ɛ7723196454 |
17 | 2134ᘔ8 | 37 | Ɛᘔ08ᘔ990ᘔ0ᘔ8 | 57 | 5662434ᘔ329ᘔ96848ᘔ8 | 77 | 271895ᘔ67839ᘔ65663ᘔ76ƐƐ4ᘔ8 | 97 | 126Ɛᘔ5Ɛ432599883ᘔ820Ɛ7ᘔƐƐ8Ɛ9Ɛ60ᘔ8 | Ɛ7 | 69Ɛ258063Ɛ65Ɛ761Ɛ3334513282ƐƐ32463708ᘔ8 |
18 | 426994 | 38 | 1Ɛ81597618194 | 58 | Ɛ104869865797149594 | 78 | 52356Ɛ91347790Ɛ107931Ɛᘔ994 | 98 | 251Ɛ8Ɛᘔ864Ɛ775479441Ɛ39ƐƐ5Ɛ7Ɛ0194 | Ɛ8 | 117ᘔ4Ɛ4107Ɛ0ƐƐ303ᘔ6668ᘔ26545Ɛᘔ6490721594 |
19 | 851768 | 39 | 3Ɛ42Ɛ73034368 | 59 | 1ᘔ20951750Ɛ372296Ɛ68 | 79 | ᘔ46Ɛ1Ɛ62693361ᘔ213663Ɛ9768 | 99 | 4ᘔ3Ɛ5Ɛ9509Ɛ32ᘔ936883ᘔ77ƐᘔƐƐ3ᘔ0368 | Ɛ9 | 23389ᘔ8213ᘔ1Ɛᘔ60791115850ᘔ8ƐƐ90961242Ɛ68 |
1ᘔ | 14ᘔ3314 | 3ᘔ | 7ᘔ85Ɛ26068714 | 5ᘔ | 38416ᘔ32ᘔ1ᘔ724571Ɛ14 | 7ᘔ | 1891ᘔ3Ɛ051667038427107Ɛ7314 | 9ᘔ | 987ᘔƐƐ6ᘔ17ᘔ659671547933Ɛ9Ɛᘔ780714 | Ɛᘔ | 467579442783Ɛ90136222Ɛ4ᘔ195ƐƐ61702485Ɛ14 |
1Ɛ | 2986628 | 3Ɛ | 1394Ɛᘔ50115228 | 5Ɛ | 74831865839248Ɛ23ᘔ28 | 7Ɛ | 356387ᘔ0ᘔ3112074852213Ɛ2628 | 9Ɛ | 17539ƐƐ183390Ɛ7122ᘔ93667Ɛ7Ɛ9341228 | ƐƐ | 912Ɛ36885347Ɛ60270445ᘔ9836ƐƐƐ0320494Ɛᘔ28 |
20 | 5751054 | 40 | 2769Ɛ8ᘔ022ᘔ454 | 60 | 12946350Ɛ476495ᘔ47854 | 80 | 6Ɛ075381862241294ᘔ4427ᘔ5054 | ᘔ0 | 32ᘔ77Ɛᘔ346761Ɛ2245967113Ɛ3Ɛ6682454 | 100 | 1625ᘔ7154ᘔ693Ɛ0052088Ɛ97471ƐƐᘔ0640969Ɛ854 |
The smallest power of 2 starts with the digit Ɛ is 221 = Ɛ2ᘔ20ᘔ8. For all digits 1 ≤ d ≤ Ɛ, there exists 0 ≤ n ≤ 21 such that 2n starts with the digit d.
21ᘔƐ = 59Ɛ18922Ɛ81631ᘔ39875663Ɛ89ᘔ853ᘔ91Ɛ595336ᘔ6114815ᘔ5ᘔ6929933ᘔ288Ɛ774Ɛ479575ᘔ628 may be the largest power of 2 not contain the digit 0, it has 65 digits. (Note that in the decimal (base ᘔ) system, the largest power of 2 not contain the digit 0 is 272 = Ɛ8196855ᘔ752550Ɛ455ᘔ1594 = 77371252455336267181195264ᘔ, it has only 22 digits in base ᘔ)
The reciprocal of n is terminating number if and only if n is 3-smooth, the 3-smooth numbers up to 1000 are 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 28, 30, 40, 46, 54, 60, 69, 80, 90, ᘔ8, 100, 116, 140, 160, 183, 194, 200, 230, 280, 300, 346, 368, 400, 460, 509, 540, 600, 690, 714, 800, 900, ᘔ16, ᘔ80, 1000.
If and only if n is a divisor of 20, then m2 = 1 mod n for every integer m coprime to n.
If and only if n is a divisor of 20, then all Dirichlet characters for n are all real.
If and only if n is a divisor of 20, then n is divisible by all numbers less than or equal to the square root of n.
If and only if n+1 is a divisor of 20, then is squarefree for all 0 ≤ k ≤ n.
All prime numbers end with prime digits or 1 (i.e. end with 1, 2, 3, 5, 7 or Ɛ), more generally, except for 2 and 3, all prime numbers end with 1, 5, 7 or Ɛ (1 and all prime digits that do not divide 10), since all prime numbers other than 2 and 3 are coprime to 10.
The density of primes end with 1 is a relatively low, but the density of primes end with 5, 7 and Ɛ are nearly equal. (since all prime squares except 4 and 9 end with 1, no prime squares end with 5, 7 or Ɛ)
Except (3, 5), all twin primes end with (5, 7) or (Ɛ, 1).
If n ≥ 3 and n is not divisible by Ɛ, then there are infinitely many primes with digit sum n.
All palindromic primes except 11 has an odd number of digits, since all even-digit palindromic numbers are divisible by 11. The palindromic primes below 1000 are 2, 3, 5, 7, Ɛ, 11, 111, 131, 141, 171, 181, 1Ɛ1, 535, 545, 565, 575, 585, 5Ɛ5, 727, 737, 747, 767, 797, Ɛ1Ɛ, Ɛ2Ɛ, Ɛ6Ɛ.
All lucky numbers end with digit 1, 3, 7 or 9.
Except for 3, all Fermat primes end with 5.
Except for 3, all Mersenne primes end with 7.
Except for 2 and 3, all Sophie Germain primes end with 5 or Ɛ.
Except for 5 and 7, all safe primes end with Ɛ.
A prime p is Gaussian prime (prime in the ring , where ) if and only if p ends with 7 or Ɛ (or p=3).
A prime p is Eisenstein prime (prime in the ring , where ) if and only if p ends with 5 or Ɛ (or p=2).
A prime p can be written as x2 + y2 if and only if p ends with 1 or 5 (or p=2).
A prime p can be written as x2 + 3y2 if and only if p ends with 1 or 7 (or p=3).
By Midy theorem, if p is a prime with even period length (let its period length be n), then if we let , then ai + ai+n/2 = Ɛ for every 1 ≤ i ≤ n/2. e.g. 1/5 = 0.249724972497..., and 24 + 97 = ƐƐ, and 1/7 = 0.186ᘔ35186ᘔ35..., and 186 + ᘔ35 = ƐƐƐ, all primes (other than 2 and 3) ≤ 37 except Ɛ, 1Ɛ and 31 have even period length, thus they can use Midy theorem to get an Ɛ-repdigit number, the length of this number is the period length of this prime.
The unique primes below 1060 are Ɛ, 11, 111, Ɛ0Ɛ1, ƐƐ01, 11111, 24727225, Ɛ0Ɛ0Ɛ0Ɛ0Ɛ1, Ɛ00Ɛ00ƐƐ0ƐƐ1, 100ƐƐƐᘔƐᘔƐƐ000101, 1111111111111111111, ƐƐƐƐ0000ƐƐƐƐ0000ƐƐƐƐ0001, 100ƐƐƐᘔƐƐ0000ƐƐƐᘔƐƐ000101, 10ƐƐƐᘔᘔᘔƐ011110ƐᘔᘔᘔƐ00011, ƐƐƐƐƐƐƐƐ00000000ƐƐƐƐƐƐƐƐ00000001, ƐƐƐ000000ƐƐƐ000000ƐƐƐƐƐƐ000ƐƐƐƐƐƐ001, and the period length of their reciprocals are 1, 2, 3, ᘔ, 10, 5, 18, 1ᘔ, 19, 50, 17, 48, 70, 5ᘔ, 68, 53.
If p is a safe prime other than 5, 7 and Ɛ, then the period length of 1/p is (p-1)/2. (this is not true for all primes ends with Ɛ (other than Ɛ itself), the first counterexample is p = 2ƐƐ, where the period length of 1/p is only 37)
There is no full reptend prime ends with 1, since 10 is quadratic residue for all primes end with 1. (In contrast, in decimal (base ᘔ) system there are some such primes, and may be infinitely many such primes, the first few such primes in that base are 61(ᘔ) = 51, 131(ᘔ) = ᘔƐ, 181(ᘔ) = 131, 461(ᘔ) = 325, 491(ᘔ) = 34Ɛ, see (sequence A073761 in the OEIS)) (if so, then this prime p is a proper prime (i.e. for the reciprocal of such primes (1/p), each digit 0, 1, 2, ..., Ɛ appears in the repeating sequence the same number of times as does each other digit (namely, (p−1)/10 times))) (In fact, not only for base 10 such primes do not exist, for all bases = 0 mod 4 (i.e. bases end with digit 0, 4 or 8), such primes do not exist)
5 and 7 are the only two safe primes which are also full reptend primes, since except 5 and 7, all safe primes end with Ɛ, and 10 is quadratic residue for all primes end with Ɛ. (In contrast, in decimal (base ᘔ) system there may be infinitely many such primes, the first few such primes in that base are 7(ᘔ) = 7, 23(ᘔ) = 1Ɛ, 47(ᘔ) = 3Ɛ, 59(ᘔ) = 4Ɛ, 167(ᘔ) = 11Ɛ, see (sequence A000353 in the OEIS)) (if so, then this prime p produces a stream of p−1 pseudo-random digits) (In fact, not only for base 10 there are only finitely many such primes, of course for square bases (bases of the form k2) only 2 may be full reptend prime (if the base is odd), and all odd primes are not full reptend primes, but since all safe primes are odd primes, for these bases such primes do not exist, besides, for the bases of the form 3k2, only 5 and 7 can be such primes, the proof for these bases is completely the same as that for base 10)
p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p | p | period length of 1/p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 111 | 3 | 267 | 266 | 41Ɛ | 20Ɛ | 591 | 3ᘔ | 767 | 766 | 927 | 926 | Ɛ1Ɛ | 56Ɛ | 1107 | 1106 | 12Ɛ5 | 12Ɛ4 | 14Ɛ1 | 14Ɛ | 16ᘔ7 | 16ᘔ6 |
3 | 0 | 117 | 116 | 271 | 27 | 421 | 63 | 59Ɛ | 2ᘔƐ | 76Ɛ | 395 | 955 | 954 | Ɛ21 | 570 | 1115 | 1114 | 1301 | 760 | 14Ɛ5 | 14Ɛ4 | 16Ɛ5 | 188 |
5 | 4 | 11Ɛ | 6Ɛ | 277 | 276 | 427 | 426 | 5Ɛ1 | 159 | 771 | 132 | 95Ɛ | 48Ɛ | Ɛ25 | Ɛ24 | 1125 | 1124 | 1317 | 506 | 14ƐƐ | 85Ɛ | 16Ɛ7 | 16Ɛ6 |
7 | 6 | 125 | 124 | 27Ɛ | 13Ɛ | 431 | 109 | 5Ɛ5 | 5Ɛ4 | 775 | 774 | 965 | 964 | Ɛ2Ɛ | 575 | 112Ɛ | 675 | 1337 | 512 | 150Ɛ | 865 | 1705 | 398 |
Ɛ | 1 | 12Ɛ | 75 | 285 | 284 | 435 | 434 | 5Ɛ7 | 66 | 77Ɛ | 39Ɛ | 971 | 172 | Ɛ31 | 116 | 1135 | 1134 | 133Ɛ | 77Ɛ | 1517 | 1ᘔᘔ | 1711 | 493 |
11 | 2 | 131 | 76 | 291 | 83 | 437 | 436 | 5ƐƐ | 2ƐƐ | 785 | 784 | 987 | 32ᘔ | Ɛ37 | Ɛ36 | 114Ɛ | 685 | 1345 | 1344 | 1521 | 436 | 1715 | 1714 |
15 | 14 | 13Ɛ | 7Ɛ | 295 | 294 | 447 | 446 | 611 | 163 | 791 | 3ᘔ6 | 995 | 994 | Ɛ45 | Ɛ44 | 1151 | 115 | 1351 | 166 | 1525 | 1524 | 1727 | 1726 |
17 | 6 | 141 | 20 | 2ᘔ1 | 150 | 455 | 454 | 615 | 614 | 797 | 796 | 9ᘔ7 | 9ᘔ6 | Ɛ61 | 16 | 1165 | 1164 | 1365 | 1364 | 1547 | 1Ɛ2 | 1735 | 1734 |
1Ɛ | Ɛ | 145 | 144 | 2ᘔƐ | 155 | 457 | 15ᘔ | 617 | 206 | 7ᘔ1 | 138 | 9ᘔƐ | 4Ɛ5 | Ɛ67 | 3ᘔ2 | 1167 | 42 | 1367 | 1366 | 1561 | 89 | 1745 | 1744 |
25 | 4 | 147 | 56 | 2Ɛ1 | 26 | 45Ɛ | 22Ɛ | 61Ɛ | 30Ɛ | 7ƐƐ | 3ƐƐ | 9Ɛ1 | 9Ɛ | Ɛ6Ɛ | 595 | 1185 | 1184 | 136Ɛ | 795 | 156Ɛ | 97 | 1747 | 1746 |
27 | 26 | 157 | 12 | 2ƐƐ | 37 | 465 | 464 | 637 | 212 | 801 | 140 | 9Ɛ5 | 9Ɛ4 | Ɛ71 | 596 | 118Ɛ | 6ᘔ5 | 1377 | 106 | 1577 | 1576 | 1751 | 32ᘔ |
31 | 9 | 167 | 166 | 301 | 90 | 46Ɛ | 7 | 63Ɛ | 31Ɛ | 80Ɛ | 405 | 9ƐƐ | 4ƐƐ | Ɛ91 | 2Ɛ3 | 1197 | 472 | 138Ɛ | 7ᘔ5 | 157Ɛ | 89Ɛ | 1755 | 1754 |
35 | 34 | 16Ɛ | 95 | 307 | 102 | 471 | 13 | 647 | 216 | 817 | 816 | ᘔ07 | ᘔ06 | Ɛ95 | Ɛ94 | 11ᘔ1 | 6Ɛ | 1391 | 3Ɛ3 | 1585 | 1584 | 1757 | 1756 |
37 | 36 | 171 | 96 | 30Ɛ | 165 | 481 | 24 | 655 | 654 | 825 | 824 | ᘔ0Ɛ | 505 | Ɛ97 | Ɛ96 | 11ᘔ5 | 11ᘔ4 | 1395 | 1394 | 1587 | 2ᘔ | 176Ɛ | 995 |
3Ɛ | 1Ɛ | 175 | 8 | 315 | 314 | 485 | 44 | 661 | 176 | 82Ɛ | 415 | ᘔ11 | 56 | Ɛᘔ5 | Ɛᘔ4 | 11ᘔ7 | 11ᘔ6 | 13ᘔ1 | 7Ɛ0 | 1591 | 2Ɛ6 | 1781 | 4Ɛ0 |
45 | 44 | 17Ɛ | 9Ɛ | 321 | 170 | 48Ɛ | 245 | 665 | 138 | 835 | 834 | ᘔ17 | ᘔ16 | ƐƐ5 | ƐƐ4 | 11ᘔƐ | 6Ɛ5 | 13ᘔ7 | 536 | 15ᘔƐ | 8Ɛ5 | 1785 | 1784 |
4Ɛ | 25 | 181 | ᘔ0 | 325 | 324 | 497 | 496 | 66Ɛ | 335 | 841 | 84 | ᘔ27 | 156 | ƐƐ7 | ƐƐ6 | 11Ɛ7 | 11Ɛ6 | 13Ɛ1 | 13Ɛ | 15ƐƐ | 8ƐƐ | 178Ɛ | 9ᘔ5 |
51 | 13 | 18Ɛ | ᘔ5 | 327 | 10ᘔ | 4ᘔ5 | 4ᘔ4 | 675 | 674 | 851 | 14ᘔ | ᘔ35 | ᘔ34 | 1005 | 1004 | 1201 | 700 | 13Ɛ5 | 13Ɛ4 | 1601 | 160 | 1797 | 1796 |
57 | 56 | 195 | 194 | 32Ɛ | 175 | 4Ɛ1 | 9ᘔ | 687 | 686 | 855 | 854 | ᘔ37 | ᘔ36 | 1011 | 73 | 120Ɛ | 705 | 1405 | 1404 | 1615 | 1614 | 17ᘔ1 | 9Ɛ0 |
5Ɛ | 2Ɛ | 19Ɛ | ᘔƐ | 33Ɛ | 17Ɛ | 4ƐƐ | 25Ɛ | 68Ɛ | 345 | 85Ɛ | 42Ɛ | ᘔ3Ɛ | 51Ɛ | 1017 | 1016 | 1211 | 706 | 1407 | 326 | 1621 | 910 | 17ᘔ5 | 17ᘔ4 |
61 | 30 | 1ᘔ5 | 1ᘔ4 | 347 | 46 | 507 | 182 | 695 | 694 | 865 | 864 | ᘔ41 | 188 | 1021 | 610 | 121Ɛ | 70Ɛ | 1425 | 1424 | 1625 | 1624 | 17ƐƐ | 9ƐƐ |
67 | 22 | 1ᘔ7 | 46 | 34Ɛ | 2Ɛ | 511 | 266 | 69Ɛ | 34Ɛ | 867 | 2ᘔ2 | ᘔ45 | ᘔ44 | 1027 | 1026 | 1231 | 123 | 142Ɛ | 815 | 1635 | 274 | 1807 | 682 |
6Ɛ | 35 | 1Ɛ1 | Ɛ6 | 357 | 11ᘔ | 517 | 516 | 6ᘔ7 | 6ᘔ6 | 871 | 152 | ᘔ4Ɛ | 525 | 1041 | 620 | 123Ɛ | 71Ɛ | 1431 | 286 | 1647 | 276 | 1815 | 1814 |
75 | 8 | 1Ɛ5 | 1Ɛ4 | 35Ɛ | 18Ɛ | 51Ɛ | 45 | 6Ɛ1 | 6Ɛ | 881 | 440 | ᘔ5Ɛ | 52Ɛ | 1047 | 1046 | 1245 | 1244 | 1437 | 1436 | 1655 | 1654 | 181Ɛ | ᘔ0Ɛ |
81 | 14 | 1Ɛ7 | 1Ɛ6 | 365 | 364 | 527 | 526 | 701 | 360 | 88Ɛ | 445 | ᘔ6Ɛ | 535 | 104Ɛ | 625 | 1255 | 114 | 143Ɛ | 81Ɛ | 1657 | 61ᘔ | 1825 | 1824 |
85 | 84 | 205 | 204 | 375 | 34 | 531 | 276 | 705 | 704 | 8ᘔ5 | 98 | ᘔ77 | ᘔ76 | 1051 | 313 | 1257 | 49ᘔ | 1445 | 1444 | 165Ɛ | 92Ɛ | 1831 | 509 |
87 | 86 | 217 | 86 | 377 | 376 | 535 | 534 | 70Ɛ | 365 | 8ᘔ7 | 2Ɛ6 | ᘔ87 | ᘔ86 | 1061 | 16 | 125Ɛ | 72Ɛ | 1457 | 1456 | 1667 | 622 | 183Ɛ | ᘔ1Ɛ |
8Ɛ | 45 | 21Ɛ | 10Ɛ | 391 | 1ᘔ6 | 541 | 54 | 711 | 71 | 8ᘔƐ | 455 | ᘔ91 | 283 | 106Ɛ | 635 | 1261 | 730 | 1461 | 38 | 1671 | 936 | 184Ɛ | ᘔ25 |
91 | 46 | 221 | 66 | 397 | 396 | 545 | 544 | 71Ɛ | 36Ɛ | 8Ɛ5 | 8Ɛ4 | ᘔ95 | ᘔ94 | 107Ɛ | 63Ɛ | 126Ɛ | 735 | 1465 | 1464 | 1677 | 20ᘔ | 1861 | 269 |
95 | 94 | 225 | 224 | 3ᘔ5 | 3ᘔ4 | 557 | 556 | 721 | 370 | 8Ɛ7 | 8Ɛ6 | ᘔ9Ɛ | 54Ɛ | 1087 | 1086 | 127Ɛ | 73Ɛ | 1467 | 562 | 167Ɛ | 93Ɛ | 1865 | 1864 |
ᘔ7 | ᘔ6 | 237 | 92 | 3ᘔƐ | 1Ɛ5 | 565 | 564 | 727 | 24ᘔ | 901 | 230 | ᘔᘔ7 | 376 | 109Ɛ | 64Ɛ | 1281 | 740 | 1471 | 419 | 1681 | 140 | 186Ɛ | ᘔ35 |
ᘔƐ | 55 | 241 | 120 | 3Ɛ5 | 3Ɛ4 | 575 | 574 | 735 | 734 | 905 | 198 | ᘔᘔƐ | 555 | 10Ɛ1 | 329 | 1295 | 94 | 1475 | 1474 | 1685 | 1684 | 1875 | 1874 |
Ɛ5 | Ɛ4 | 24Ɛ | 125 | 3Ɛ7 | 3Ɛ6 | 577 | 116 | 737 | 736 | 907 | 906 | ᘔƐ7 | ᘔƐ6 | 10Ɛ7 | 10Ɛ6 | 1297 | 1296 | 147Ɛ | 83Ɛ | 168Ɛ | 945 | 1877 | 146 |
Ɛ7 | Ɛ6 | 251 | 73 | 401 | 100 | 585 | 584 | 745 | 744 | 90Ɛ | 465 | ᘔƐƐ | 55Ɛ | 10ƐƐ | 65Ɛ | 12ᘔ1 | 75 | 148Ɛ | 845 | 1697 | 1696 | 189Ɛ | ᘔ4Ɛ |
105 | 104 | 255 | 254 | 40Ɛ | 205 | 587 | 1ᘔᘔ | 747 | 9ᘔ | 91Ɛ | 46Ɛ | Ɛ11 | 1ᘔ2 | 1101 | 220 | 12ᘔ5 | 2Ɛ8 | 1495 | 1494 | 169Ɛ | 94Ɛ | 18ᘔ1 | 210 |
107 | 106 | 25Ɛ | 12Ɛ | 415 | 414 | 58Ɛ | 2ᘔ5 | 751 | 1ᘔ3 | 921 | 236 | Ɛ15 | 228 | 1105 | 1104 | 12ᘔ7 | 12ᘔ6 | 149Ɛ | 84Ɛ | 16ᘔ1 | 950 | 18ᘔƐ | ᘔ55 |
period length | primes | period length | primes |
---|---|---|---|
1 | Ɛ | 11 | 1Ɛ0411, 69ᘔ3901 |
2 | 11 | 12 | 157, 7687 |
3 | 111 | 13 | 51, 471, 57Ɛ1 |
4 | 5, 25 | 14 | 15, 81, 106ᘔ95 |
5 | 11111 | 15 | ᘔ9ᘔ9ᘔƐ, 126180ƐƐ0ƐƐ |
6 | 7, 17 | 16 | Ɛ61, 1061 |
7 | 46Ɛ, 2ᘔ3Ɛ | 17 | 1111111111111111111 |
8 | 75, 175 | 18 | 24727225 |
9 | 31, 3ᘔ891 | 19 | Ɛ00Ɛ00ƐƐ0ƐƐ1 |
ᘔ | Ɛ0Ɛ1 | 1ᘔ | Ɛ0Ɛ0Ɛ0Ɛ0Ɛ1 |
Ɛ | 1Ɛ, 754Ɛ2Ɛ41 | 1Ɛ | 3Ɛ, 78935Ɛᘔ441, 523074ᘔ3ᘔᘔƐ |
10 | ƐƐ01 | 20 | 141, 8Ɛ5281 |
The period level of a prime p ≥ 5 is (p−1)/(period length of 1/p), e.g., has period level 3, thus the numbers with integer 1 ≤ a ≤ 16 from 3 different cycles: 076Ɛ45 (for a = 1, 7, 8, Ɛ, 10, 16), 131ᘔ8ᘔ (for a = 2, 3, 5, 12, 14, 15) and 263958 (for a = 4, 6, 9, ᘔ, 11, 13). Besides, has period level 1, thus this number is a cyclic number and 15 is a full-reptend prime, and all of the numbers with integer 1 ≤ a ≤ 14 from the cycle 08579214Ɛ36429ᘔ7.
n | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +ᘔ | +Ɛ | +10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 10 | 10 | 10 | 101 | 10 | 1001 | 100 | 100 | 1010 | 11111111111 | 10 |
10+ | 11 | 10010 | 1010 | 100 | 10111 | 100 | 1001 | 1010 | 10010 | 111111111110 | 11101 | 100 |
20+ | 110111 | 110 | 1000 | 10010 | 101 | 1010 | 101011 | 1000 | 111111111110 | 101110 | 101101 | 100 |
30+ | 1001001 | 10010 | 110 | 10100 | 111001 | 10010 | 101001 | 111111111110 | 10100 | 111010 | 10001111 | 100 |
40+ | 10111101 | 1101110 | 101110 | 110 | 1100101 | 1000 | 1011101111111 | 100100 | 10010 | 1010 | 101011 | 1010 |
50+ | 10010101 | 1010110 | 100100 | 1000 | 1111 | 111111111110 | 1100101 | 101110 | 111010 | 1011010 | 1100111 | 100 |
60+ | 10101101 | 10010010 | 1101110 | 10010 | 1011101111111 | 110 | 10101011 | 10100 | 10000 | 1110010 | 100111001 | 10010 |
70+ | 1101001 | 1010010 | 1010 | 1111111111100 | 10001 | 10100 | 1001 | 111010 | 1010110 | 100011110 | 101101 | 1000 |
80+ | 111011 | 101111010 | 1111111111100 | 1101110 | 110001 | 101110 | 10100111 | 1100 | 1011010 | 11001010 | 100111 | 1000 |
90+ | 1010111111 | 10111011111110 | 10010010 | 100100 | 10101001 | 10010 | 110101001 | 1010 | 1100 | 1010110 | 101100011 | 10100 |
ᘔ0+ | 111111111101 | 100101010 | 1110010 | 1010110 | 11100001 | 100100 | 1100001 | 10000 | 1010010 | 11110 | 1111011111 | 111111111110 |
Ɛ0+ | 1001 | 11001010 | 101000 | 1011100 | 101011 | 111010 | 11010111 | 1011010 | 100011110 | 11001110 | 1111111111111111111111 | 100 |
n | 1 | 5 | 7 | Ɛ | 11 | 15 | 17 | 1Ɛ | 21 | 25 | 27 | 2Ɛ |
smallest k such that k×n is a repunit | 1 | 275 | 1ᘔ537 | 123456789Ɛ | 1 | 92ᘔ79Ɛ43715865 | 8327 | 69Ɛ63848Ɛ | 634ᘔ159788253ᘔ72Ɛ1 | 55 | 509867481Ɛ793ᘔᘔ5ᘔ1243628Ɛ317 | 45ᘔ3976ᘔ7Ɛ |
the length of the repunit k×n | 1 | 4 | 6 | Ɛ | 2 | 14 | 6 | Ɛ | 18 | 4 | 26 | 10 |
(this k is usually not prime, in fact, this k is not prime for all numbers n < 100 which are coprime to 10 except n = 55, and for n < 1000 which is coprime to 10, this k is prime only for n = 55, 101, 19Ɛ, 275 and 46Ɛ, and only 19Ɛ and 46Ɛ are itself prime, other 3 numbers are 5×11, 5×25 and 11×25, and this k for these n are successively 25, 11 and 5, which makes k×n = R4 = 1111 = 5×11×25, besides, this k for n = 46Ɛ is 2ᘔ3Ɛ, which makes k×n = R7 = 1111111, a repunit semiprime, and this k for n = 19Ɛ is a ᘔ8-digit prime number, with k×n = RᘔƐ, another repunit semiprime)
For every prime p except Ɛ, the repunit with length p is congruent to 1 mod p. (The converse is also not true, the counterexamples up to 1000 are 4, 6, 10, 33, 55, 77, Ɛ1, 101, 187, 1Ɛ0, 275, 444, 4ᘔ7, 777, 781, Ɛ55, they are called "repunit pseudoprimes" (or weak deceptive primes), all deceptive primes are also repunit pseudoprimes, if n is repunit pseudoprime, then Rn is also repunit pseudoprime, thus there are infinitely may repunit pseudoprimes. No repunit pseudoprimes are divisible by 8, 9 or Ɛ. (in fact, the repunit pseudoprimes are exactly the weak pseudoprimes for base 10 (composite numbers c such that 10c = 10 mod c) which are not divisible by Ɛ) Besides, the deceptive primes are exactly the repunit pseudoprimes which are coprime to 10)
Smallest multiple of n with digit sum 2 are: (0 if not exist)
- 2, 2, 20, 20, 101, 20, 1001, 20, 200, 1010, 0, 20, 11, 10010, 1010, 200, 100000001, 200, 1001, 1010, 10010, 0, 0, 20, 10000000001, 110, 2000, 10010, 101, 1010, 1000000000000001, 200, 0, 1000000010, 1000000000001, 200, ..., if and only if n is divisible by some prime p with 1/p odd period length, then such number does not exist.
Smallest multiple of n with digit sum 3 are: (0 if not exist)
- 3, 12, 3, 30, 21, 30, 12, 120, 30, 210, 0, 30, 0, 12, 210, 300, 201, 30, 10101, 210, 120, 0, 1010001, 120, 21, 0, 300, 120, 0, 210, 1010001, 1200, 0, 2010, 200001, 30, ..., such number does not exist for n divisible by Ɛ, 11 or 25.
Smallest multiple of n with digit sum 4 are: (0 if not exist)
- 4, 4, 13, 4, 13, 40, 103, 40, 130, 130, 0, 40, 22, 1030, 13, 40, 3001, 130, 2002, 130, 103, 0, 11101, 40, 10012, 22, 1300, 1030, 202, 130, 10003, 400, 0, 30010, 101101, 130, ..., such number is conjectured to exist for all n not divisible by Ɛ (of course, if n is divisible by Ɛ, then such number does not exist).
Smallest multiple of n with digit sum n are:
- 1, 2, 3, 4, 5, 6, 7, 8, 9, ᘔ, Ɛ, 1Ɛ0, 20Ɛ, 22ᘔ, 249, 268, 287, 2ᘔ6, 45ᘔ, 488, 4Ɛ6, 1Ɛᘔ, 8Ɛ4, 3Ɛᘔ0, 3ƐƐ, 23Ɛᘔ, 1899, ᘔᘔ8, 2Ɛ79, 4Ɛ96, 1Ɛᘔ9, 4ᘔᘔ8, 2ƐƐ9, 3ᘔƐᘔ, 799ᘔ, 5ƐƐ90, ..., such number is conjectured to exist for all n.
All numbers of the form 34{1} are composite (proof: 34{1n} = 34×10n+(10n−1)/Ɛ = (309×10n−1)/Ɛ and it can be factored to ((19×10n/2−1)/Ɛ) × (19×10n/2+1) for even n and divisible by 11 for odd n). Besides, 34 was proven to be the smallest n such that all numbers of the form n{1} are composite. However, the smallest prime of the form 23{1} is 23{1Ɛ78}, it has Ɛ7ᘔ digits. The only other two n≤100 such that all numbers of the form n{1} are composite are 89 and 99 (the reason of 89 is the same as 34, and the reason of 99 is 99{1n} is divisible by 5, 11 or 25).
The only known of the form 1{0}1 is 11, these are the primes obtained as the concatenation of a power of 10 followed by a 1. If n = 1 mod 11, then all numbers obtained as the concatenation of a power of n (>1) followed by a 1 are divisible by 11 and thus composite. Except 10, the smallest n not = 1 mod 11 such that all numbers obtained as the concatenation of a power of n (>1) followed by a 1 are composite was proven by Ɛᘔ, since all numbers obtained as the concatenation of a power of Ɛᘔ (>1) followed by a 1 are divisible by either Ɛ or 11 and thus composite. However, the smallest prime obtained as the concatenation of a power of 58 (>1) followed by a 1 is 10×582781Ɛ5+1, it has 459655 digits.
All numbers of the form 1{5}1 are composite (proof: 1{5n}1 = (14×10n+1−41)/Ɛ and it can be factored to (4×10(n+1)/2−7) × ((4×10(n+1)/2−7)/Ɛ) for odd n and divisible by 11 for even n).
The emirps below 1000 are 15, 51, 57, 5Ɛ, 75, Ɛ5, 107, 117, 11Ɛ, 12Ɛ, 13Ɛ, 145, 157, 16Ɛ, 17Ɛ, 195, 19Ɛ, 1ᘔ7, 1Ɛ5, 507, 51Ɛ, 541, 577, 587, 591, 59Ɛ, 5Ɛ1, 5ƐƐ, 701, 705, 711, 751, 76Ɛ, 775, 785, 7ᘔ1, 7ƐƐ, Ɛ11, Ɛ15, Ɛ21, Ɛ31, Ɛ61, Ɛ67, Ɛ71, Ɛ91, Ɛ95, ƐƐ5, ƐƐ7.
The non-repdigit permutable primes below 1010100 are 15, 57, 5Ɛ, 117, 11Ɛ, 5ƐƐƐ (the smallest representative prime of the permutation set).
The non-repdigit circular primes below 1010100 are 15, 57, 5Ɛ, 117, 11Ɛ, 175, 1Ɛ7, 157Ɛ, 555Ɛ, 115Ɛ77 (the smallest representative prime of the cycle).
The first few Smarandache primes are the concatenation of the first 5, 15, 4Ɛ, 151, ... positive integers.
The only known Smarandache–Wellin primes are 2 and 2357Ɛ11.
There are exactly 15 minimal primes, and they are 2, 3, 5, 7, Ɛ, 11, 61, 81, 91, 401, ᘔ41, 4441, ᘔ0ᘔ1, ᘔᘔᘔᘔ1, 44ᘔᘔᘔ1, ᘔᘔᘔ0001, ᘔᘔ000001.
The smallest weakly prime is 6Ɛ8ᘔƐ77.
The largest left-truncatable prime is 28-digit 471ᘔ34ᘔ164259Ɛᘔ16Ɛ324ᘔƐ8ᘔ32Ɛ7817, and the largest right-truncatable prime is ᘔ-digit 375ƐƐ5Ɛ515.
The only two base 10 Wieferich primes up to 1010 are 1685 and 5Ɛ685, note that both of the numbers end with 685, and it is conjectured that all base 10 Wieferich primes end with 685. (there is also a note for the only two known base 2 Wieferich primes (771 and 2047) minus 1 written in base 2, 8 (= 23) and 14 (= 24), 770 = 010001000100(2) = 444(14) is a repdigit in base 14, and 2046 = 110110110110(2) = 6666(8) is also a repdigit in base 8, see Wieferich prime#Binary periodicity of p − 1)
There are 1, 2, 3, 5 and 6-digit (but not 4-digit) narcissistic numbers, there are totally 73 narcissistic numbers, the first few of which are 1, 2, 3, 4, 5, 6, 7, 8, 9, ᘔ, Ɛ, 25, ᘔ5, 577, 668, ᘔ83, 14765, 938ᘔ4, 369862, ᘔ2394ᘔ, ..., the largest of which is 43-digit 15079346ᘔ6Ɛ3Ɛ14ƐƐ56Ɛ395898Ɛ96629ᘔ8Ɛ01515344Ɛ4Ɛ0714Ɛ. (see (sequence A161949 in the OEIS))
The only two factorions are 1 and 2.
The only seven happy numbers below 1000 are 1, 10, 100, 222, 488, 848 and 884, almost all natural numbers are unhappy. All unhappy numbers get to one of these four cycles: {5, 21}, {8, 54, 35, 2ᘔ, 88, ᘔ8, 118, 56, 51, 22}, {18, 55, 42}, {68, 84}, or one of the only two fixed points other than 1: 25 and ᘔ5. (In contrast, in the decimal (base ᘔ) system there are Ɛᘔ happy numbers below 1000(ᘔ) (=6Ɛ4), and all unhappy number get to this cycle: {4, 16, 37, 58, 89, 145, 42, 20}, there are no fixed points other than 1)
If we use the sum of the cubes (instead of squares) of the digits, then every natural numbers get to either 1 or the cycle {8, 368, 52Ɛ, ᘔ20, 700, 247, 2ᘔ7, 947, 7ᘔ8, 10ᘔ7, 940, 561, 246, 200}. (In contrast, in the decimal (base ᘔ) system all multiple of 3 get to 153(ᘔ) (=109), and other numbers get to either one of these four fixed points: 1, 370, 371, 407, or one of these four cycles: {55, 250, 133}, {136, 244}, {160, 217, 352}, {919, 1459}) (for the example of the famous Hardy–Ramanujan number 1001 = 93 + ᘔ3, we know that this sequence with initial term 9ᘔ is 9ᘔ, 1001, 2, 8, 368, 52Ɛ, ᘔ20, 700, 247, 2ᘔ7, 947, 7ᘔ8, 10ᘔ7, 940, 561, 246, 200, 8, 368, 52Ɛ, ᘔ20, 700, 247, 2ᘔ7, 947, 7ᘔ8, 10ᘔ7, 940, 561, 246, 200, 8, ...)
n | fixed points and cycled for the sequence for sum of n-th powers of the digits | length of these cycles |
---|---|---|
1 | {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {ᘔ}, {Ɛ} | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
2 | {1}, {5, 21}, {8, 54, 35, 2ᘔ, 88, ᘔ8, 118, 56, 51, 22}, {18, 55, 42}, {25}, {68, 84}, {ᘔ5} | 1, 2, ᘔ, 3, 1, 2, 1 |
3 | {1}, {8, 368, 52Ɛ, ᘔ20, 700, 247, 2ᘔ7, 947, 7ᘔ8, 10ᘔ7, 940, 561, 246, 200}, {577}, {668}, {6Ɛ5, Ɛ74, 100ᘔ}, {ᘔ83}, {11ᘔᘔ} | 1, 12, 1, 1, 3, 1, 1 |
4 | {1}, {ᘔ6ᘔ, 103ᘔ8, 8256, 35ᘔ9, 9ƐᘔƐ, 22643, Ɛ69, 1102ᘔ, 596ᘔ, ᘔ842, 8394, 6442, 1080, 2455}, {206ᘔ, 6668, 4754}, {3ᘔ2Ɛ, 12396, 472Ɛ, ᘔ02ᘔ, Ɛ700, 9ᘔ42, 98ᘔ9, 13902} | 1, 12, 3, 8 |
The harshad numbers up to 200 are 1, 2, 3, 4, 5, 6, 7, 8, 9, ᘔ, Ɛ, 10, 1ᘔ, 20, 29, 30, 38, 40, 47, 50, 56, 60, 65, 70, 74, 80, 83, 90, 92, ᘔ0, ᘔ1, Ɛ0, 100, 10ᘔ, 110, 115, 119, 120, 122, 128, 130, 134, 137, 146, 150, 153, 155, 164, 172, 173, 182, 191, 1ᘔ0, 1Ɛ0, 1Ɛᘔ, 200, although the sequence of factorials begins with harshad numbers, not all factorials are harshad numbers, after 7! (=2Ɛ00, with digit sum 11 but 11 does not divide 7!), 8ᘔ4! is the next that is not (8ᘔ4! has digit sum 8275 = Ɛ×8Ɛ7, thus not divide 8ᘔ4!). There are no 21 consecutive integers that are all harshad numbers, but there are infinitely many 20-tuples of consecutive integers that are all harshad numbers.
The Kaprekar numbers up to 10000 are 1, Ɛ, 56, 66, ƐƐ, 444, 778, ƐƐƐ, 12ᘔᘔ, 1640, 2046, 2929, 3333, 4973, 5Ɛ60, 6060, 7249, 8889, 9293, 9Ɛ76, ᘔ580, ᘔ912, ƐƐƐƐ.
The Kaprekar's routine of any four-digit number which is not repdigit converges to either the cycle {3ƐƐ8, 8284, 6376} or the cycle {4198, 8374, 5287, 6196, 7ƐƐ4, 7375}, and the Kaprekar map of any three-digit number which is not repdigit converges to the fixed point 5Ɛ6, and the Kaprekar map of any two-digit number which is not repdigit converges to the cycle {0Ɛ, ᘔ1, 83, 47, 29, 65}.
n | cycles for Kaprekar's routine for n-digit numbers | length of these cycles |
---|---|---|
1 | {0} | 1 |
2 | {00}, {0Ɛ, ᘔ1, 83, 47, 29, 65} | 1, 6 |
3 | {000}, {5Ɛ6} | 1, 1 |
4 | {0000}, {3ƐƐ8, 8284, 6376}, {4198, 8374, 5287, 6196, 7ƐƐ4, 7375} | 1, 3, 6 |
5 | {00000}, {64Ɛ66, 6ƐƐƐ5}, {83Ɛ74} | 1, 2, 1 |
6 | {000000}, {420ᘔ98, ᘔ73742, 842874, 642876, 62ƐƐ86, 951963, 860ᘔ54, ᘔ40ᘔ72, ᘔ82832, 864654}, {65ƐƐ56} | 1, ᘔ, 1 |
The self numbers up to 600 are 1, 3, 5, 7, 9, Ɛ, 20, 31, 42, 53, 64, 75, 86, 97, ᘔ8, Ɛ9, 10ᘔ, 110, 121, 132, 143, 154, 165, 176, 187, 198, 1ᘔ9, 1Ɛᘔ, 20Ɛ, 211, 222, 233, 244, 255, 266, 277, 288, 299, 2ᘔᘔ, 2ƐƐ, 310, 312, 323, 334, 345, 356, 367, 378, 389, 39ᘔ, 3ᘔƐ, 400, 411, 413, 424, 435, 446, 457, 468, 479, 48ᘔ, 49Ɛ, 4Ɛ0, 501, 512, 514, 525, 536, 547, 558, 569, 57ᘔ, 58Ɛ, 5ᘔ0, 5Ɛ1.
The Friedman numbers up to 1000 are 121=112, 127=7×21, 135=5×31, 144=4×41, 163=3×61, 368=86−3, 376=6×73, 441=(4+1)4, 445=54+4.
The Keith numbers up to 1000 are 11, 15, 1Ɛ, 22, 2ᘔ, 31, 33, 44, 49, 55, 62, 66, 77, 88, 93, 99, ᘔᘔ, ƐƐ, 125, 215, 24ᘔ, 405, 42ᘔ, 654, 80ᘔ, 8ᘔ3, ᘔ59.
There are totally 71822 polydivisible numbers, the largest of which is 24-digit 606890346850Ɛᘔ6800Ɛ036206464. However, there are no Ɛ-digit polydivisible numbers contain the digits 1 to Ɛ exactly once each.
The candidate Lychrel numbers up to 1000 are 179, 1Ɛ9, 278, 2Ɛ8, 377, 3Ɛ7, 476, 4Ɛ6, 575, 5Ɛ5, 674, 6Ɛ4, 773, 7Ɛ3, 872, 8Ɛ2, 971, 9Ɛ1, ᘔ2Ɛ, ᘔ3Ɛ, ᘔ5Ɛ, ᘔ70, ᘔᘔƐ, ᘔƐ0, Ɛ2ᘔ, Ɛ3ᘔ, Ɛ5ᘔ, Ɛᘔᘔ. The only suspected Lychrel seed numbers up to 1000 are 179, 1Ɛ9, ᘔ3Ɛ and ᘔ5Ɛ. However, it is unknown whether any Lychrel number exists. (Lychrel numbers only known to exist in these bases: Ɛ, 15, 18, 22 and all powers of 2)
Most numbers that end with 2 are nontotient (in fact, all nontotients < 58 except 2ᘔ end with 2), except 2 itself, the first counterexample is 92, which equals φ(ᘔ1) = φ(Ɛ2) and φ(182) = φ(2×Ɛ2), next counterexample is 362, which equals φ(381) = φ(1Ɛ2) and φ(742) = φ(2×1Ɛ2), there are only 9 such numbers ≤ 10000 (the number 2 itself is not counted), all such numbers (except the number 2 itself) are of the form φ(p2) = p(p−1), where p is a prime ends with Ɛ.
Prime numbers[]
(In this section, all numbers are written with duodecimal)
A natural number (i.e. 1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if it has exactly two positive divisors, 1 and the number itself. Natural numbers greater than 1 that are not prime are called composite.
The first 1ᘔ5 prime numbers (all the prime numbers less than 1000) are:
- 2, 3, 5, 7, Ɛ, 11, 15, 17, 1Ɛ, 25, 27, 31, 35, 37, 3Ɛ, 45, 4Ɛ, 51, 57, 5Ɛ, 61, 67, 6Ɛ, 75, 81, 85, 87, 8Ɛ, 91, 95, ᘔ7, ᘔƐ, Ɛ5, Ɛ7, 105, 107, 111, 117, 11Ɛ, 125, 12Ɛ, 131, 13Ɛ, 141, 145, 147, 157, 167, 16Ɛ, 171, 175, 17Ɛ, 181, 18Ɛ, 195, 19Ɛ, 1ᘔ5, 1ᘔ7, 1Ɛ1, 1Ɛ5, 1Ɛ7, 205, 217, 21Ɛ, 221, 225, 237, 241, 24Ɛ, 251, 255, 25Ɛ, 267, 271, 277, 27Ɛ, 285, 291, 295, 2ᘔ1, 2ᘔƐ, 2Ɛ1, 2ƐƐ, 301, 307, 30Ɛ, 315, 321, 325, 327, 32Ɛ, 33Ɛ, 347, 34Ɛ, 357, 35Ɛ, 365, 375, 377, 391, 397, 3ᘔ5, 3ᘔƐ, 3Ɛ5, 3Ɛ7, 401, 40Ɛ, 415, 41Ɛ, 421, 427, 431, 435, 437, 447, 455, 457, 45Ɛ, 465, 46Ɛ, 471, 481, 485, 48Ɛ, 497, 4ᘔ5, 4Ɛ1, 4ƐƐ, 507, 511, 517, 51Ɛ, 527, 531, 535, 541, 545, 557, 565, 575, 577, 585, 587, 58Ɛ, 591, 59Ɛ, 5Ɛ1, 5Ɛ5, 5Ɛ7, 5ƐƐ, 611, 615, 617, 61Ɛ, 637, 63Ɛ, 647, 655, 661, 665, 66Ɛ, 675, 687, 68Ɛ, 695, 69Ɛ, 6ᘔ7, 6Ɛ1, 701, 705, 70Ɛ, 711, 71Ɛ, 721, 727, 735, 737, 745, 747, 751, 767, 76Ɛ, 771, 775, 77Ɛ, 785, 791, 797, 7ᘔ1, 7ƐƐ, 801, 80Ɛ, 817, 825, 82Ɛ, 835, 841, 851, 855, 85Ɛ, 865, 867, 871, 881, 88Ɛ, 8ᘔ5, 8ᘔ7, 8ᘔƐ, 8Ɛ5, 8Ɛ7, 901, 905, 907, 90Ɛ, 91Ɛ, 921, 927, 955, 95Ɛ, 965, 971, 987, 995, 9ᘔ7, 9ᘔƐ, 9Ɛ1, 9Ɛ5, 9ƐƐ, ᘔ07, ᘔ0Ɛ, ᘔ11, ᘔ17, ᘔ27, ᘔ35, ᘔ37, ᘔ3Ɛ, ᘔ41, ᘔ45, ᘔ4Ɛ, ᘔ5Ɛ, ᘔ6Ɛ, ᘔ77, ᘔ87, ᘔ91, ᘔ95, ᘔ9Ɛ, ᘔᘔ7, ᘔᘔƐ, ᘔƐ7, ᘔƐƐ, Ɛ11, Ɛ15, Ɛ1Ɛ, Ɛ21, Ɛ25, Ɛ2Ɛ, Ɛ31, Ɛ37, Ɛ45, Ɛ61, Ɛ67, Ɛ6Ɛ, Ɛ71, Ɛ91, Ɛ95, Ɛ97, Ɛᘔ5, ƐƐ5, ƐƐ7
Except 2 and 3, all primes end with 1, 5, 7 or Ɛ. The first k such that all of 10k, 10k + 1, 10k + 2, ..., 10k + Ɛ are composite is 38, i.e. all of 380, 381, 382, ..., 38Ɛ are composite. (numbers k such that all of 10k, 10k + 1, 10k + 2, ..., 10k + Ɛ are composite are 38, 5ᘔ, 60, 62, 89, 93, 94, Ɛ0, Ɛ5, Ɛ8, ...)
The maximal gaps of primes less than 1000 is (927, 955), the gap (the difference of these two numbers) is 2ᘔ (i.e. there are 29 consecutive composites between 927 and 955).
The density of primes end with 1 is a relatively low (< 1/4), but the density of primes end with 5, 7 and Ɛ are nearly equal (all are a little more than 1/4). (i.e. for a given natural number N, the number of primes end with 1 less than N is usually smaller than the number of primes end with 5 (or 7, or Ɛ) less than N) e.g. For all 1426 primes < 10000, there are 3Ɛ8 primes (2Ɛ.3%) end with 1, 410 primes (30.3%) end with 5, 412 primes (30.5%) end with 7, 406 primes (2Ɛ.Ɛ%) end with Ɛ. It is conjectured that for every natural number N ≥ 10, the number of primes end with 1 less than N is smaller than the number of primes end with 5 (or 7, or Ɛ) less than N. (Note: the percentage in this section are also in duodecimal, i.e. 20% means 0.2 or 20/100 = 1/6, 36% means 0.36 or 36/100 = 7/20, 58.7% means 0.587 or 587/1000)
13665 is the smallest prime p such that the number of primes end with 1 or 5 ≤ p is more than the number of primes end with 3, 7 or Ɛ ≤ p (see (sequence A007350 in the OEIS), of course, 3 is the only prime ends with 3). Besides, 9ᘔ03693ᘔ831 is the smallest prime p such that the number of primes end with 1 or 7 ≤ p is more than the number of primes end with 2, 5 or Ɛ ≤ p (see (sequence A007352 in the OEIS), of course, 2 is the only prime ends with 2). Question: What is the smallest prime p such that the number of primes end with 1 ≤ p is more than the number of primes end with d ≤ p for at least one of d = 5, 7 or Ɛ?
All squares of primes (except 2 and 3) end with 1.
There are 2ᘔ primes between 0 and 100, 23 primes between 100 and 200, 1ᘔ primes between 200 and 300, 1ᘔ primes between 300 and 400, 1Ɛ primes between 400 and 500, 1ᘔ primes between 500 and 600, 16 primes between 600 and 700, 1ᘔ primes between 700 and 800, 18 primes between 800 and 900, 16 primes between 900 and ᘔ00, 1ᘔ primes between ᘔ00 and Ɛ00, 17 primes between Ɛ00 and 1000.
There are about N/ln(N) primes less than N, where ln is the natural logarithm, i.e. the logarithm with base e = 2.875236069821..., thus there are about primes less than 10n (i.e. with at most n digits), and ln(10) = 2.599Ɛ035Ɛ8169...
N | total numbers of primes less than N | numbers of primes end with 1 less than N | numbers of primes end with 5 less than N | numbers of primes end with 7 less than N | numbers of primes end with Ɛ less than N | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. | Duod. | Dec. |
10 | 12 | 5 | 5 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
40 | 48 | 13 | 15 | 2 | 2 | 4 | 4 | 4 | 4 | 3 | 3 |
100 | 144 | 2ᘔ | 34 | 6 | 6 | 9 | 9 | 9 | 9 | 8 | 8 |
400 | 576 | 89 | 105 | 1ᘔ | 22 | 23 | 27 | 23 | 27 | 23 | 27 |
1000 | 1728 | 1ᘔ5 | 269 | 51 | 61 | 59 | 69 | 59 | 69 | 58 | 68 |
4000 | 6912 | 621 | 889 | 157 | 211 | 16ᘔ | 226 | 170 | 228 | 166 | 222 |
10000 | 20736 | 1426 | 2334 | 3Ɛ8 | 572 | 410 | 588 | 412 | 590 | 406 | 582 |
40000 | 82944 | 4833 | 8103 | 11ᘔ4 | 1996 | 121Ɛ | 2039 | 1219 | 2037 | 1211 | 2029 |
100000 | 248832 | 10852 | 21950 | 31ᘔ4 | 5452 | 3225 | 5501 | 3225 | 5501 | 321ᘔ | 5494 |
400000 | 995328 | 3928Ɛ | 78155 | Ɛ333 | 19479 | Ɛ377 | 19531 | Ɛ3Ɛ9 | 19581 | Ɛ3ᘔ2 | 19562 |
1000000 | 2985984 | ᘔ4Ɛ20 | 215880 | 27204 | 53860 | 27295 | 53969 | 2730ᘔ | 54010 | 27333 | 54039 |
In the following table, numbers shaded in cyan are primes.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ᘔ | Ɛ | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1ᘔ | 1Ɛ | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2ᘔ | 2Ɛ | 30 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 3ᘔ | 3Ɛ | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4ᘔ | 4Ɛ | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5ᘔ | 5Ɛ | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 6ᘔ | 6Ɛ | 70 |
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 7ᘔ | 7Ɛ | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 8ᘔ | 8Ɛ | 90 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 9ᘔ | 9Ɛ | ᘔ0 |
ᘔ1 | ᘔ2 | ᘔ3 | ᘔ4 | ᘔ5 | ᘔ6 | ᘔ7 | ᘔ8 | ᘔ9 | ᘔᘔ | ᘔƐ | Ɛ0 |
Ɛ1 | Ɛ2 | Ɛ3 | Ɛ4 | Ɛ5 | Ɛ6 | Ɛ7 | Ɛ8 | Ɛ9 | Ɛᘔ | ƐƐ | 100 |
The twin prime pairs below 100 are (3, 5), (5, 7), (Ɛ, 11), (15, 17), (25, 27), (35, 37), (4Ɛ, 51), (5Ɛ, 61), (85, 87), (8Ɛ, 91), (Ɛ5, Ɛ7), and there are only 47 twin prime pairs below 1000. Except (3, 5), all twin prime pairs end with (5, 7) or (Ɛ, 1), and it is conjectured that the density of them are the same.
Fractions and irrational numbers[]
Fractions[]
Duodecimal fractions may be simple:
- 12 = 0.6
- 13 = 0.4
- 14 = 0.3
- 16 = 0.2
- 18 = 0.16
- 19 = 0.14
- 110 = 0.1 (note that this is a twelfth, 1ᘔ is a tenth)
- 114 = 0.09 (note that this is a sixteenth, 112 is a fourteenth)
or complicated:
- 15 = 0.249724972497... recurring (rounded to 0.24ᘔ)
- 17 = 0.186ᘔ35186ᘔ35... recurring (rounded to 0.187)
- 1ᘔ = 0.1249724972497... recurring (rounded to 0.125)
- 1Ɛ = 0.111111111111... recurring (rounded to 0.111)
- 111 = 0.0Ɛ0Ɛ0Ɛ0Ɛ0Ɛ0Ɛ... recurring (rounded to 0.0Ɛ1)
- 112 = 0.0ᘔ35186ᘔ35186... recurring (rounded to 0.0ᘔ3)
- 113 = 0.0972497249724... recurring (rounded to 0.097)
Examples in duodecimal | Decimal equivalent |
---|---|
1 × (58) = 0.76 | 1 × (58) = 0.625 |
100 × (58) = 76 | 144 × (58) = 90 |
5769 = 76 | 8109 = 90 |
4009 = 54 | 5769 = 64 |
1ᘔ.6 + 7.6 = 26 | 22.5 + 7.5 = 30 |
As explained in recurring decimals, whenever an irreducible fraction is written in radix point notation in any base, the fraction can be expressed exactly (terminates) if and only if all the prime factors of its denominator are also prime factors of the base. Thus, in base-ten (= 2×5) system, fractions whose denominators are made up solely of multiples of 2 and 5 terminate: 18 = 1(2×2×2), 120 = 1(2×2×5) and 1500 = 1(2×2×5×5×5) can be expressed exactly as 0.125, 0.05 and 0.002 respectively. 13 and 17, however, recur (0.333... and 0.142857142857...). In the duodecimal (= 2×2×3) system, 18 is exact; 120 and 1500 recur because they include 5 as a factor; 13 is exact; and 17 recurs, just as it does in decimal.
The number of denominators which give terminating fractions within a given number of digits, say n, in a base b is the number of factors (divisors) of bn, the nth power of the base b (although this includes the divisor 1, which does not produce fractions when used as the denominator). The number of factors of bn is given using its prime factorization.
For decimal, 10n = 2n * 5n. The number of divisors is found by adding one to each exponent of each prime and multiplying the resulting quantities together. Factors of 10n = (n+1)(n+1) = (n+1)2.
For example, the number 8 is a factor of 103 (1000), so 1/8 and other fractions with a denominator of 8 can not require more than 3 fractional decimal digits to terminate. 5/8 = 0.625ten
For duodecimal, 12n = 22n * 3n. This has (2n+1)(n+1) divisors. The sample denominator of 8 is a factor of a gross (122 = 144), so eighths can not need more than two duodecimal fractional places to terminate. 5/8 = 0.76twelve
Because both ten and twelve have two unique prime factors, the number of divisors of bn for b = 10 or 12 grows quadratically with the exponent n (in other words, of the order of n2).
Recurring digits[]
The Dozenal Society of America argues that factors of 3 are more commonly encountered in real-life division problems than factors of 5. Thus, in practical applications, the nuisance of repeating decimals is encountered less often when duodecimal notation is used. Advocates of duodecimal systems argue that this is particularly true of financial calculations, in which the twelve months of the year often enter into calculations.
However, when recurring fractions do occur in duodecimal notation, they are less likely to have a very short period than in decimal notation, because 12 (twelve) is between two prime numbers, 11 (eleven) and 13 (thirteen), whereas ten is adjacent to the composite number 9. Nonetheless, having a shorter or longer period doesn't help the main inconvenience that one does not get a finite representation for such fractions in the given base (so rounding, which introduces inexactitude, is necessary to handle them in calculations), and overall one is more likely to have to deal with infinite recurring digits when fractions are expressed in decimal than in duodecimal, because one out of every three consecutive numbers contains the prime factor 3 in its factorization, whereas only one out of every five contains the prime factor 5. All other prime factors, except 2, are not shared by either ten or twelve, so they do not influence the relative likeliness of encountering recurring digits (any irreducible fraction that contains any of these other factors in its denominator will recur in either base). Also, the prime factor 2 appears twice in the factorization of twelve, whereas only once in the factorization of ten; which means that most fractions whose denominators are powers of two will have a shorter, more convenient terminating representation in duodecimal than in decimal representation (e.g. 1/(22) = 0.25 ten = 0.3 twelve; 1/(23) = 0.125 ten = 0.16 twelve; 1/(24) = 0.0625 ten = 0.09 twelve; 1/(25) = 0.03125 ten = 0.046 twelve; etc.).
Values in bold indicate that value is exact.
Decimal base Prime factors of the base: 2, 5 Prime factors of one below the base: 3 Prime factors of one above the base: 11 All other primes: 7, 13, 17, 19, 23, 29, 31 |
Duodecimal base Prime factors of the base: 2, 3 Prime factors of one below the base: Ɛ Prime factors of one above the base: 11 All other primes: 5, 7, 15, 17, 1Ɛ, 25, 27 | ||||
Fraction | Prime factors of the denominator |
Positional representation | Positional representation | Prime factors of the denominator |
Fraction |
---|---|---|---|---|---|
1/2 | 2 | 0.5 | 0.6 | 2 | 1/2 |
1/3 | 3 | 0.3 | 0.4 | 3 | 1/3 |
1/4 | 2 | 0.25 | 0.3 | 2 | 1/4 |
1/5 | 5 | 0.2 | 0.2497 | 5 | 1/5 |
1/6 | 2, 3 | 0.16 | 0.2 | 2, 3 | 1/6 |
1/7 | 7 | 0.142857 | 0.186ᘔ35 | 7 | 1/7 |
1/8 | 2 | 0.125 | 0.16 | 2 | 1/8 |
1/9 | 3 | 0.1 | 0.14 | 3 | 1/9 |
1/10 | 2, 5 | 0.1 | 0.12497 | 2, 5 | 1/ᘔ |
1/11 | 11 | 0.09 | 0.1 | Ɛ | 1/Ɛ |
1/12 | 2, 3 | 0.083 | 0.1 | 2, 3 | 1/10 |
1/13 | 13 | 0.076923 | 0.0Ɛ | 11 | 1/11 |
1/14 | 2, 7 | 0.0714285 | 0.0ᘔ35186 | 2, 7 | 1/12 |
1/15 | 3, 5 | 0.06 | 0.09724 | 3, 5 | 1/13 |
1/16 | 2 | 0.0625 | 0.09 | 2 | 1/14 |
1/17 | 17 | 0.0588235294117647 | 0.08579214Ɛ36429ᘔ7 | 15 | 1/15 |
1/18 | 2, 3 | 0.05 | 0.08 | 2, 3 | 1/16 |
1/19 | 19 | 0.052631578947368421 | 0.076Ɛ45 | 17 | 1/17 |
1/20 | 2, 5 | 0.05 | 0.07249 | 2, 5 | 1/18 |
1/21 | 3, 7 | 0.047619 | 0.06ᘔ3518 | 3, 7 | 1/19 |
1/22 | 2, 11 | 0.045 | 0.06 | 2, Ɛ | 1/1ᘔ |
1/23 | 23 | 0.0434782608695652173913 | 0.06316948421 | 1Ɛ | 1/1Ɛ |
1/24 | 2, 3 | 0.0416 | 0.06 | 2, 3 | 1/20 |
1/25 | 5 | 0.04 | 0.05915343ᘔ0Ɛ62ᘔ68781Ɛ | 5 | 1/21 |
1/26 | 2, 13 | 0.0384615 | 0.056 | 2, 11 | 1/22 |
1/27 | 3 | 0.037 | 0.054 | 3 | 1/23 |
1/28 | 2, 7 | 0.03571428 | 0.05186ᘔ3 | 2, 7 | 1/24 |
1/29 | 29 | 0.0344827586206896551724137931 | 0.04Ɛ7 | 25 | 1/25 |
1/30 | 2, 3, 5 | 0.03 | 0.04972 | 2, 3, 5 | 1/26 |
1/31 | 31 | 0.032258064516129 | 0.0478ᘔᘔ093598166Ɛ74311Ɛ28623ᘔ55 | 27 | 1/27 |
1/32 | 2 | 0.03125 | 0.046 | 2 | 1/28 |
1/33 | 3, 11 | 0.03 | 0.04 | 3, Ɛ | 1/29 |
1/34 | 2, 17 | 0.02941176470588235 | 0.0429ᘔ708579214Ɛ36 | 2, 15 | 1/2ᘔ |
1/35 | 5, 7 | 0.0285714 | 0.0414559Ɛ3931 | 5, 7 | 1/2Ɛ |
1/36 | 2, 3 | 0.027 | 0.04 | 2, 3 | 1/30 |
The duodecimal period length of 1/n are
- 0, 0, 0, 0, 4, 0, 6, 0, 0, 4, 1, 0, 2, 6, 4, 0, 16, 0, 6, 4, 6, 1, 11, 0, 20, 2, 0, 6, 4, 4, 30, 0, 1, 16, 12, 0, 9, 6, 2, 4, 40, 6, 42, 1, 4, 11, 23, 0, 42, 20, 16, 2, 52, 0, 4, 6, 6, 4, 29, 4, 15, 30, 6, 0, 4, 1, 66, 16, 11, 12, 35, 0, ... (sequence A246004 in the OEIS)
The duodecimal period length of 1/(nth prime) are
- 0, 0, 4, 6, 1, 2, 16, 6, 11, 4, 30, 9, 40, 42, 23, 52, 29, 15, 66, 35, 36, 26, 41, 8, 16, 100, 102, 53, 54, 112, 126, 65, 136, 138, 148, 150, 3, 162, 83, 172, 89, 90, 95, 24, 196, 66, 14, 222, 113, 114, 8, 119, 120, 125, 256, 131, 268, 54, 138, 280, ... (sequence A246489 in the OEIS)
Smallest prime with duodecimal period n are
- 11, 13, 157, 5, 22621, 7, 659, 89, 37, 19141, 23, 20593, 477517, 211, 61, 17, 2693651, 1657, 29043636306420266077, 85403261, 8177824843189, 57154490053, 47, 193, 303551, 79, 306829, 673, 59, 31, 373, 153953, 886381, 2551, 71, 73, ... (sequence A252170 in the OEIS)
Irrational numbers[]
Algebraic irrational number | In decimal | In duodecimal |
---|---|---|
√2 (the length of the diagonal of a unit square) | 1.414213562373... (≈ 1.414) | 1.4Ɛ79170ᘔ07Ɛ8... (≈ 1.4Ɛ7) |
√3 (the length of the diagonal of a unit cube, or twice the height of an equilateral triangle of unit side) | 1.732050807568... (≈ 1.732) | 1.894Ɛ97ƐƐ9687... (≈ 1.895) |
√5 (the length of the diagonal of a 1×2 rectangle) | 2.236067977499... (≈ 2.236) | 2.29ƐƐ13254058... (≈ 2.2ᘔ) |
φ (phi, the golden ratio = ) | 1.618033988749... (≈ 1.618) | 1.74ƐƐ6772802ᘔ... (≈ 1.75) |
Transcendental irrational number | In decimal | In duodecimal |
π (pi, the ratio of circumference to diameter) | 3.141592653589793238462643... (≈ 3.142) | 3.184809493Ɛ918664573ᘔ6211... (≈ 3.185) |
e (the base of the natural logarithm) | 2.718281828459... (≈ 2.718) | 2.875236069821... (≈ 2.875) |
The first few digits of the decimal and duodecimal representation of another important number, the Euler–Mascheroni constant (the status of which as a rational or irrational number is not yet known), are:
Number | In decimal | In duodecimal |
---|---|---|
γ (the limiting difference between the harmonic series and the natural logarithm) | 0.577215664901... (≈ 0.577) | 0.6Ɛ15188ᘔ6760... (≈ 0.6Ɛ1) |
Gallery[1][]
Duodecimal clock[]
- Dozenal Clock by Joshua Harkey
- Dozenal Clock with four hands and a digital display, in several variants, by Paul Rapoport